Suppr超能文献

水飞蓟宾和吲哚菁绿负载纳米颗粒在体外抑制哺乳动物乳腺癌细胞的生长和转移。

Silibinin and indocyanine green-loaded nanoparticles inhibit the growth and metastasis of mammalian breast cancer cells in vitro.

作者信息

Sun Hui-Ping, Su Jing-Han, Meng Qing-Shuo, Yin Qi, Zhang Zhi-Wen, Yu Hai-Jun, Zhang Peng-Cheng, Wang Si-Ling, Li Ya-Ping

机构信息

School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China.

State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.

出版信息

Acta Pharmacol Sin. 2016 Jul;37(7):941-9. doi: 10.1038/aps.2016.20. Epub 2016 May 2.

Abstract

AIM

To improve the therapeutic efficacy of cancer treatments, combinational therapies based on nanosized drug delivery system (NDDS) has been developed recently. In this study we designed a new NDDS loaded with an anti-metastatic drug silibinin and a photothermal agent indocyanine green (ICG), and investigated its effects on the growth and metastasis of breast cancer cells in vitro.

METHODS

Silibinin and ICG were self-assembled into PCL lipid nanoparticles (SIPNs). Their physical characteristics including the particle size, zeta potential, morphology and in vitro drug release were examined. 4T1 mammalian breast cancer cells were used to evaluate their cellular internalization, cytotoxicity, and their influences on wound healing, in vitro cell migration and invasion.

RESULTS

SIPNs showed a well-defined spherical shape with averaged size of 126.3±0.4 nm and zeta potential of -10.3±0.2 mV. NIR laser irradiation substantially increased the in vitro release of silibinin from the SIPNs (58.3% at the first 8 h, and 97.8% for the total release). Furthermore, NIR laser irradiation markedly increased the uptake of SIPNs into 4T1 cells. Under the NIR laser irradiation, both SIPNs and IPNs (PCL lipid nanoparticles loaded with ICG alone) caused dose-dependent ablation of 4T1 cells. The wound healing, migration and invasion experiments showed that SIPNs exposed to NIR laser irradiation exhibited dramatic in vitro anti-metastasis effects.

CONCLUSION

SIPNs show temperature-sensitive drug release following NIR laser irradiation, which can inhibit the growth and metastasis of breast cancer cells in vitro.

摘要

目的

为提高癌症治疗的疗效,基于纳米药物递送系统(NDDS)的联合疗法近来已被开发。在本研究中,我们设计了一种负载抗转移药物水飞蓟宾和光热剂吲哚菁绿(ICG)的新型NDDS,并研究了其对体外乳腺癌细胞生长和转移的影响。

方法

水飞蓟宾和ICG自组装成聚己内酯脂质纳米颗粒(SIPNs)。检测了它们的物理特性,包括粒径、zeta电位、形态和体外药物释放。使用4T1哺乳动物乳腺癌细胞评估其细胞摄取、细胞毒性以及对伤口愈合、体外细胞迁移和侵袭的影响。

结果

SIPNs呈现出形状明确的球形,平均粒径为126.3±0.4 nm,zeta电位为-10.3±0.2 mV。近红外激光照射显著增加了水飞蓟宾从SIPNs中的体外释放(前8小时释放58.3%,总释放量为97.8%)。此外,近红外激光照射显著增加了SIPNs对4T1细胞的摄取。在近红外激光照射下,SIPNs和IPNs(仅负载ICG的聚己内酯脂质纳米颗粒)均导致4T1细胞的剂量依赖性消融。伤口愈合、迁移和侵袭实验表明,经近红外激光照射的SIPNs表现出显著的体外抗转移作用。

结论

SIPNs在近红外激光照射后呈现温度敏感型药物释放,可在体外抑制乳腺癌细胞的生长和转移。

相似文献

2
Synergistic inhibition of breast cancer metastasis by silibinin-loaded lipid nanoparticles containing TPGS.
Int J Pharm. 2013 Sep 15;454(1):21-30. doi: 10.1016/j.ijpharm.2013.06.053. Epub 2013 Jul 3.
4
Biomimetic HDL nanoparticle mediated tumor targeted delivery of indocyanine green for enhanced photodynamic therapy.
Colloids Surf B Biointerfaces. 2016 Dec 1;148:533-540. doi: 10.1016/j.colsurfb.2016.09.037. Epub 2016 Sep 26.
5
Hyperthermal paclitaxel-bound albumin nanoparticles co-loaded with indocyanine green and hyaluronidase for treating pancreatic cancers.
Arch Pharm Res. 2021 Feb;44(2):182-193. doi: 10.1007/s12272-020-01264-9. Epub 2020 Aug 17.
9
An NIR-Guided Aggregative and Self-Immolative Nanosystem for Efficient Cancer Targeting and Combination Anticancer Therapy.
Mol Pharm. 2018 Nov 5;15(11):4985-4994. doi: 10.1021/acs.molpharmaceut.8b00599. Epub 2018 Oct 15.

引用本文的文献

1
Anti-cancer effects of frankincense methanolic extract on brain metastatic breast cancer cells.
Avicenna J Phytomed. 2025 Jan-Feb;15(1):776-783. doi: 10.22038/AJP.2024.24655.
2
Nanoparticle-mediated diagnosis, treatment, and prevention of breast cancer.
Nanoscale Adv. 2024 May 23;6(15):3699-3713. doi: 10.1039/d3na00965c. eCollection 2024 Jul 23.
3
Phytoactive Molecules and Nanodelivery Approaches for Breast Cancer Treatment: Current and Future Perspectives.
Curr Pharm Biotechnol. 2025;26(6):795-812. doi: 10.2174/0113892010299183240529094844.
5
Oral membrane-biomimetic nanoparticles for enhanced endocytosis and regulation of tumor-associated macrophage.
J Nanobiotechnology. 2023 Jul 4;21(1):206. doi: 10.1186/s12951-023-01949-5.
6
Emerging indocyanine green-integrated nanocarriers for multimodal cancer therapy: a review.
Nanoscale Adv. 2021 Apr 15;3(12):3332-3352. doi: 10.1039/d1na00059d. eCollection 2021 Jun 15.
8
9
Insight into the preformed albumin corona on and performances of albumin-selective nanoparticles.
Asian J Pharm Sci. 2019 Jan;14(1):52-62. doi: 10.1016/j.ajps.2018.07.002. Epub 2018 Aug 9.
10
Naturally occurring anti-cancer compounds: shining from Chinese herbal medicine.
Chin Med. 2019 Nov 6;14:48. doi: 10.1186/s13020-019-0270-9. eCollection 2019.

本文引用的文献

5
Hydrogen-bonded and reduction-responsive micelles loading atorvastatin for therapy of breast cancer metastasis.
Biomaterials. 2014 Aug;35(26):7574-87. doi: 10.1016/j.biomaterials.2014.05.030. Epub 2014 Jun 2.
6
Multifunctional theranostic red blood cells for magnetic-field-enhanced in vivo combination therapy of cancer.
Adv Mater. 2014 Jul 23;26(28):4794-802. doi: 10.1002/adma.201400158. Epub 2014 May 19.
7
Combinatorial photothermal and immuno cancer therapy using chitosan-coated hollow copper sulfide nanoparticles.
ACS Nano. 2014 Jun 24;8(6):5670-81. doi: 10.1021/nn5002112. Epub 2014 May 13.
8
Polymer-encapsulated organic nanoparticles for fluorescence and photoacoustic imaging.
Chem Soc Rev. 2014 Sep 21;43(18):6570-97. doi: 10.1039/c4cs00014e.
9
Near-infrared-induced heating of confined water in polymeric particles for efficient payload release.
ACS Nano. 2014 May 27;8(5):4815-26. doi: 10.1021/nn500702g. Epub 2014 Apr 10.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验