Zhang Mingliang, Lin Yuan-Hung, Sun Yujiao Jennifer, Zhu Saiyong, Zheng Jiashun, Liu Kai, Cao Nan, Li Ke, Huang Yadong, Ding Sheng
Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA; Roddenberry Center for Stem Cell Biology and Medicine, Gladstone Institutes, San Francisco, CA 94158, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA.
Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA.
Cell Stem Cell. 2016 May 5;18(5):653-67. doi: 10.1016/j.stem.2016.03.020. Epub 2016 Apr 28.
Cellular reprogramming using chemically defined conditions, without genetic manipulation, is a promising approach for generating clinically relevant cell types for regenerative medicine and drug discovery. However, small-molecule approaches for inducing lineage-specific stem cells from somatic cells across lineage boundaries have been challenging. Here, we report highly efficient reprogramming of mouse fibroblasts into induced neural stem cell-like cells (ciNSLCs) using a cocktail of nine components (M9). The resulting ciNSLCs closely resemble primary neural stem cells molecularly and functionally. Transcriptome analysis revealed that M9 induces a gradual and specific conversion of fibroblasts toward a neural fate. During reprogramming specific transcription factors such as Elk1 and Gli2 that are downstream of M9-induced signaling pathways bind and activate endogenous master neural genes to specify neural identity. Our study provides an effective chemical approach for generating neural stem cells from mouse fibroblasts and reveals mechanistic insights into underlying reprogramming processes.
在无基因操作的情况下,使用化学成分明确的条件进行细胞重编程,是一种很有前景的方法,可用于生成再生医学和药物研发中具有临床相关性的细胞类型。然而,通过小分子方法跨越谱系边界将体细胞诱导为谱系特异性干细胞一直具有挑战性。在此,我们报告了使用九种成分的混合物(M9)将小鼠成纤维细胞高效重编程为诱导神经干细胞样细胞(ciNSLCs)。所产生的ciNSLCs在分子和功能上与原代神经干细胞极为相似。转录组分析表明,M9诱导成纤维细胞逐渐且特异性地向神经命运转变。在重编程过程中,诸如M9诱导信号通路下游的Elk1和Gli2等特定转录因子结合并激活内源性主要神经基因,以确定神经身份。我们的研究提供了一种从小鼠成纤维细胞生成神经干细胞的有效化学方法,并揭示了潜在重编程过程的机制性见解。