Suppr超能文献

量子不可逆性中的李雅普诺夫衰减。

Lyapunov decay in quantum irreversibility.

作者信息

García-Mata Ignacio, Roncaglia Augusto J, Wisniacki Diego A

机构信息

Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR), CONICET-UNMdP, Mar del Plata, Argentina Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina

Departamento de Física 'J. J. Giambiagi' and IFIBA, FCEyN, Universidad de Buenos Aires, Buenos Aires 1428, Argentina.

出版信息

Philos Trans A Math Phys Eng Sci. 2016 Jun 13;374(2069). doi: 10.1098/rsta.2015.0157.

Abstract

The Loschmidt echo--also known as fidelity--is a very useful tool to study irreversibility in quantum mechanics due to perturbations or imperfections. Many different regimes, as a function of time and strength of the perturbation, have been identified. For chaotic systems, there is a range of perturbation strengths where the decay of the Loschmidt echo is perturbation independent, and given by the classical Lyapunov exponent. But observation of the Lyapunov decay depends strongly on the type of initial state upon which an average is carried out. This dependence can be removed by averaging the fidelity over the Haar measure, and the Lyapunov regime is recovered, as has been shown for quantum maps. In this work, we introduce an analogous quantity for systems with infinite dimensional Hilbert space, in particular the quantum stadium billiard, and we show clearly the universality of the Lyapunov regime.

摘要

洛施密特回波——也称为保真度——是研究量子力学中由于微扰或不完美导致的不可逆性的一种非常有用的工具。根据时间和微扰强度,已经确定了许多不同的情况。对于混沌系统,存在一定范围的微扰强度,在此范围内洛施密特回波的衰减与微扰无关,且由经典李雅普诺夫指数给出。但是李雅普诺夫衰减的观测强烈依赖于进行平均的初始态类型。如量子映射的情况所示,通过对哈尔测度上的保真度进行平均可以消除这种依赖性,并且可以恢复李雅普诺夫情况。在这项工作中,我们为具有无限维希尔伯特空间的系统引入了一个类似的量,特别是量子体育场台球,并且我们清楚地展示了李雅普诺夫情况的普遍性。

相似文献

1
Lyapunov decay in quantum irreversibility.
Philos Trans A Math Phys Eng Sci. 2016 Jun 13;374(2069). doi: 10.1098/rsta.2015.0157.
2
Sensitivity to perturbations in a quantum chaotic billiard.
Phys Rev E Stat Nonlin Soft Matter Phys. 2002 May;65(5 Pt 2):055206. doi: 10.1103/PhysRevE.65.055206. Epub 2002 May 17.
3
Crossover of quantum Loschmidt echo from golden-rule decay to perturbation-independent decay.
Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Nov;66(5 Pt 2):056208. doi: 10.1103/PhysRevE.66.056208. Epub 2002 Nov 26.
4
Loschmidt echo and the local density of states.
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Oct;80(4 Pt 2):046216. doi: 10.1103/PhysRevE.80.046216. Epub 2009 Oct 26.
5
Irreversibility in quantum maps with decoherence.
Philos Trans A Math Phys Eng Sci. 2011 Jan 28;369(1935):278-90. doi: 10.1098/rsta.2010.0254.
6
Golden rule decay versus Lyapunov decay of the quantum Loschmidt echo.
Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Nov;64(5 Pt 2):055203. doi: 10.1103/PhysRevE.64.055203. Epub 2001 Oct 15.
7
Decoherence as decay of the Loschmidt echo in a Lorentz gas.
Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Apr;65(4 Pt 2A):045206. doi: 10.1103/PhysRevE.65.045206. Epub 2002 Apr 8.
8
Decay of the Loschmidt echo in a time-dependent environment.
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Aug;74(2 Pt 2):026207. doi: 10.1103/PhysRevE.74.026207. Epub 2006 Aug 16.
9
Quantum corrections to fidelity decay in chaotic systems.
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Mar;81(3 Pt 2):036222. doi: 10.1103/PhysRevE.81.036222. Epub 2010 Mar 30.
10
Irreversibility with quantum trajectories.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Oct;72(4 Pt 2):046219. doi: 10.1103/PhysRevE.72.046219. Epub 2005 Oct 27.

引用本文的文献

1
Loschmidt echo and time reversal in complex systems.
Philos Trans A Math Phys Eng Sci. 2016 Jun 13;374(2069). doi: 10.1098/rsta.2015.0383.

本文引用的文献

1
Relaxation of isolated quantum systems beyond chaos.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Jan;91(1):010902. doi: 10.1103/PhysRevE.91.010902. Epub 2015 Jan 23.
2
Experimental observation of Loschmidt time reversal of a quantum chaotic system.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Apr;83(4 Pt 2):046218. doi: 10.1103/PhysRevE.83.046218. Epub 2011 Apr 25.
3
Fidelity decay for local perturbations: microwave evidence for oscillating decay exponents.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Jan;83(1 Pt 2):016214. doi: 10.1103/PhysRevE.83.016214. Epub 2011 Jan 31.
4
Loschmidt echo and the local density of states.
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Oct;80(4 Pt 2):046216. doi: 10.1103/PhysRevE.80.046216. Epub 2009 Oct 26.
5
Statistics of the work done on a quantum critical system by quenching a control parameter.
Phys Rev Lett. 2008 Sep 19;101(12):120603. doi: 10.1103/PhysRevLett.101.120603. Epub 2008 Sep 16.
6
Algebraic fidelity decay for local perturbations.
Phys Rev Lett. 2008 Mar 28;100(12):124101. doi: 10.1103/PhysRevLett.100.124101. Epub 2008 Mar 25.
7
Fidelity and quantum chaos in the mesoscopic device for the josephson flux qubit.
Phys Rev Lett. 2007 Feb 2;98(5):057006. doi: 10.1103/PhysRevLett.98.057006.
8
Dephasing representation of quantum fidelity for general pure and mixed states.
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Apr;73(4 Pt 2):046204. doi: 10.1103/PhysRevE.73.046204. Epub 2006 Apr 14.
9
Dephasing representation: Employing the shadowing theorem to calculate quantum correlation functions.
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Nov;70(5 Pt 2):055201. doi: 10.1103/PhysRevE.70.055201. Epub 2004 Nov 18.
10
Loschmidt echo for a chaotic oscillator.
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Aug;70(2 Pt 2):026206. doi: 10.1103/PhysRevE.70.026206. Epub 2004 Aug 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验