García-Mata Ignacio, Roncaglia Augusto J, Wisniacki Diego A
Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR), CONICET-UNMdP, Mar del Plata, Argentina Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina
Departamento de Física 'J. J. Giambiagi' and IFIBA, FCEyN, Universidad de Buenos Aires, Buenos Aires 1428, Argentina.
Philos Trans A Math Phys Eng Sci. 2016 Jun 13;374(2069). doi: 10.1098/rsta.2015.0157.
The Loschmidt echo--also known as fidelity--is a very useful tool to study irreversibility in quantum mechanics due to perturbations or imperfections. Many different regimes, as a function of time and strength of the perturbation, have been identified. For chaotic systems, there is a range of perturbation strengths where the decay of the Loschmidt echo is perturbation independent, and given by the classical Lyapunov exponent. But observation of the Lyapunov decay depends strongly on the type of initial state upon which an average is carried out. This dependence can be removed by averaging the fidelity over the Haar measure, and the Lyapunov regime is recovered, as has been shown for quantum maps. In this work, we introduce an analogous quantity for systems with infinite dimensional Hilbert space, in particular the quantum stadium billiard, and we show clearly the universality of the Lyapunov regime.
洛施密特回波——也称为保真度——是研究量子力学中由于微扰或不完美导致的不可逆性的一种非常有用的工具。根据时间和微扰强度,已经确定了许多不同的情况。对于混沌系统,存在一定范围的微扰强度,在此范围内洛施密特回波的衰减与微扰无关,且由经典李雅普诺夫指数给出。但是李雅普诺夫衰减的观测强烈依赖于进行平均的初始态类型。如量子映射的情况所示,通过对哈尔测度上的保真度进行平均可以消除这种依赖性,并且可以恢复李雅普诺夫情况。在这项工作中,我们为具有无限维希尔伯特空间的系统引入了一个类似的量,特别是量子体育场台球,并且我们清楚地展示了李雅普诺夫情况的普遍性。