Max Planck Institut für Physik komplexer Systeme, Nöthnitzer Straße 38, 01187 Dresden, Germany Department of Physics and Astronomy, Washington State University, Pullman, WA 99164-2814, USA
Philos Trans A Math Phys Eng Sci. 2016 Jun 13;374(2069). doi: 10.1098/rsta.2015.0161.
Using semiclassical methods, it is possible to construct very accurate approximations in the short-wavelength limit of quantum dynamics that rely exclusively on classical dynamical input. For systems whose classical realization is strongly chaotic, there is an exceedingly short logarithmic Ehrenfest time scale, beyond which the quantum and classical dynamics of a system necessarily diverge, and yet the semiclassical construction remains valid far beyond that time. This fact leads to a paradox if one ponders the reversibility and predictability properties of quantum and classical mechanics. They behave very differently relative to each other, with classical dynamics being essentially irreversible/unpredictable, whereas quantum dynamics is reversible/stable. This begs the question: 'How can an accurate approximation to a reversible/stable dynamics be constructed from an irreversible/unpredictable one?' The resolution of this incongruity depends on a couple of key ingredients: a well-known, inherent, one-way structural stability of chaotic systems; and an overlap integral not being amenable to the saddle point method.
利用半经典方法,可以在量子动力学的短波长极限中构建非常精确的近似值,这些近似值完全依赖于经典动力学的输入。对于其经典实现具有强烈混沌的系统,存在一个非常短的对数 Ehrenfest 时间尺度,超出该时间尺度,系统的量子和经典动力学必然会发散,但半经典构造仍然在该时间之后有效。如果考虑量子力学和经典力学的可逆性和可预测性特性,这一事实会导致悖论。它们彼此之间的行为非常不同,经典动力学本质上是不可逆/不可预测的,而量子动力学是可逆/稳定的。这就引出了一个问题:“如何从不可逆/不可预测的动力学中构建一个准确的可逆/稳定的近似值?”这个矛盾的解决取决于几个关键因素:混沌系统众所周知的、内在的单向结构稳定性;以及重叠积分不适用于鞍点方法。