Suppr超能文献

相似文献

1
Origins of ultralow velocity zones through slab-derived metallic melt.
Proc Natl Acad Sci U S A. 2016 May 17;113(20):5547-51. doi: 10.1073/pnas.1519540113. Epub 2016 May 3.
3
Hydrogen-bearing iron peroxide and the origin of ultralow-velocity zones.
Nature. 2017 Nov 22;551(7681):494-497. doi: 10.1038/nature24461.
5
Superionic iron hydride shapes ultralow-velocity zones at Earth's core-mantle boundary.
Proc Natl Acad Sci U S A. 2024 Aug 27;121(35):e2406386121. doi: 10.1073/pnas.2406386121. Epub 2024 Aug 20.
6
Spin crossover and iron-rich silicate melt in the Earth's deep mantle.
Nature. 2011 May 12;473(7346):199-202. doi: 10.1038/nature09940. Epub 2011 Apr 24.
7
Seismic detection of folded, subducted lithosphere at the core-mantle boundary.
Nature. 2006 May 18;441(7091):333-6. doi: 10.1038/nature04757.
8
Compositionally-distinct ultra-low velocity zones on Earth's core-mantle boundary.
Nat Commun. 2017 Aug 2;8(1):177. doi: 10.1038/s41467-017-00219-x.
9
Extensive iron-water exchange at Earth's core-mantle boundary can explain seismic anomalies.
Nat Commun. 2024 Oct 15;15(1):8701. doi: 10.1038/s41467-024-52677-9.
10
Melting of subducted basalt at the core-mantle boundary.
Science. 2014 May 23;344(6186):892-5. doi: 10.1126/science.1250466.

引用本文的文献

1
Superionic iron hydride shapes ultralow-velocity zones at Earth's core-mantle boundary.
Proc Natl Acad Sci U S A. 2024 Aug 27;121(35):e2406386121. doi: 10.1073/pnas.2406386121. Epub 2024 Aug 20.
2
Slab control on the mega-sized North Pacific ultra-low velocity zone.
Nat Commun. 2022 Feb 24;13(1):1042. doi: 10.1038/s41467-022-28708-8.
3
Tracking the origin of ultralow velocity zones at the base of Earth's mantle.
Natl Sci Rev. 2021 Jan 2;8(4):nwaa308. doi: 10.1093/nsr/nwaa308. eCollection 2021 Apr.
4
Formation of large low shear velocity provinces through the decomposition of oxidized mantle.
Nat Commun. 2021 Mar 26;12(1):1911. doi: 10.1038/s41467-021-22185-1.
7
Hydrogen-bearing iron peroxide and the origin of ultralow-velocity zones.
Nature. 2017 Nov 22;551(7681):494-497. doi: 10.1038/nature24461.
8
Compositionally-distinct ultra-low velocity zones on Earth's core-mantle boundary.
Nat Commun. 2017 Aug 2;8(1):177. doi: 10.1038/s41467-017-00219-x.
9
Carbon-bearing silicate melt at deep mantle conditions.
Sci Rep. 2017 Apr 12;7(1):848. doi: 10.1038/s41598-017-00918-x.

本文引用的文献

1
Slab melting as a barrier to deep carbon subduction.
Nature. 2016 Jan 7;529(7584):76-9. doi: 10.1038/nature16174.
3
Reevaluating carbon fluxes in subduction zones, what goes down, mostly comes up.
Proc Natl Acad Sci U S A. 2015 Jul 28;112(30):E3997-4006. doi: 10.1073/pnas.1507889112. Epub 2015 Jun 5.
4
Melting of subducted basalt at the core-mantle boundary.
Science. 2014 May 23;344(6186):892-5. doi: 10.1126/science.1250466.
5
A seismologically consistent compositional model of Earth's core.
Proc Natl Acad Sci U S A. 2014 May 27;111(21):7542-5. doi: 10.1073/pnas.1316708111. Epub 2014 May 12.
6
Low core-mantle boundary temperature inferred from the solidus of pyrolite.
Science. 2014 Jan 31;343(6170):522-5. doi: 10.1126/science.1248186. Epub 2014 Jan 16.
7
Characterization and implications of intradecadal variations in length of day.
Nature. 2013 Jul 11;499(7457):202-4. doi: 10.1038/nature12282.
8
Melting of iron at Earth's inner core boundary based on fast X-ray diffraction.
Science. 2013 Apr 26;340(6131):464-6. doi: 10.1126/science.1233514.
9
The oxidation state of the mantle and the extraction of carbon from Earth's interior.
Nature. 2013 Jan 3;493(7430):84-8. doi: 10.1038/nature11679.
10
Spin crossover and iron-rich silicate melt in the Earth's deep mantle.
Nature. 2011 May 12;473(7346):199-202. doi: 10.1038/nature09940. Epub 2011 Apr 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验