Ye X H, Metcalf T N, Andrews D M, Carraway C A, Carraway K L
Department of Anatomy and Cell Biology, University of Miami School of Medicine, Florida 33101.
Exp Cell Res. 1989 May;182(1):160-72. doi: 10.1016/0014-4827(89)90288-7.
Microfilament cores, obtained by extracting 13762 mammary ascites tumor cell microvilli with Triton X-100, contain a major glycoprotein migrating at an apparent molecular weight of 80 kDa by dodecyl sulfate-polyacrylamide gel electrophoresis. The 80-kDa component is a disulfide-linked multimer, as demonstrated by velocity sedimentation and agarose-acrylamide gel electrophoresis analyses under nonreducing conditions. This 80-kDa species is not metabolically labeled, as is a minor 80-kDa glycoprotein found in the cores, membranes, and an isolated transmembrane complex with actin. Antibodies prepared against the 80-kDa glycoprotein react strongly with bovine IgM and more weakly with rat IgM. These antibodies were used to demonstrate that the 80-kDa component is present in microvilli, microvillar microfilament cores, and microvillar membranes only if the microvilli are prepared in the presence of calf serum. The 80-kDa component, purified by velocity sedimentation in dodecyl sulfate, reacts with anti-rat IgM by immunoblot analyses. Moreover, immunoprecipitation of detergent extracts of microvilli with anti-rat IgM specifically sediments the 80-kDa component. The 80-kDa glycoprotein fractionates with the actin-containing transmembrane complex prepared by gel filtration of Triton-solubilized microvillar membranes. These results indicate that the disulfide-linked, multi-meric 80-kDa component is bovine IgM, which binds strongly to a cell-surface component of the microvilli, and is indirectly associated with the microfilament cores. Thus, the IgM provides a marker by which the transmembrane complexes to the microfilaments can be identified.