Suppr超能文献

微流控装置中诱导的微/亚微米颗粒的确定性绝对负迁移率。

Deterministic Absolute Negative Mobility for Micro- and Submicrometer Particles Induced in a Microfluidic Device.

机构信息

School of Molecular Sciences and ⊥Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University , Tempe, Arizona 85287, United States.

Department of Biochemistry, Molecular Biology and Biophysics, and §Department of Chemistry, University of Minnesota , Minneapolis, Minnesota 55455, United States.

出版信息

Anal Chem. 2016 Jun 7;88(11):5920-7. doi: 10.1021/acs.analchem.6b00837. Epub 2016 May 17.

Abstract

Efficient separations of particles with micron and submicron dimensions are extremely useful in preparation and analysis of materials for nanotechnological and biological applications. Here, we demonstrate a nonintuitive, yet efficient, separation mechanism for μm and subμm colloidal particles and organelles, taking advantage of particle transport in a nonlinear post array in a microfluidic device under the periodic action of electrokinetic and dielectrophoretic forces. We reveal regimes in which deterministic particle migration opposite to the average applied force occurs for a larger particle, a typical signature of deterministic absolute negative mobility (dANM), whereas normal response is obtained for smaller particles. The coexistence of dANM and normal migration was characterized and optimized in numerical modeling and subsequently implemented in a microfluidic device demonstrating at least 2 orders of magnitude higher migration speeds as compared to previous ANM systems. We also induce dANM for mouse liver mitochondria and envision that the separation mechanisms described here provide size selectivity required in future separations of organelles, nanoparticles, and protein nanocrystals.

摘要

高效分离微米和亚微米尺寸的颗粒在纳米技术和生物应用材料的制备和分析中非常有用。在这里,我们展示了一种非直观但高效的微米和亚微米胶体颗粒和细胞器分离机制,利用在微流控装置中的非线性后列阵中在电动和介电泳力的周期性作用下的颗粒传输。我们揭示了对于较大颗粒,出现与平均施加力相反的确定性颗粒迁移的区域,这是确定性绝对负迁移率(dANM)的典型特征,而对于较小颗粒则获得正常响应。在数值建模中对 dANM 和正常迁移的共存进行了表征和优化,并随后在微流控装置中实现,与以前的 ANM 系统相比,迁移速度至少提高了 2 个数量级。我们还诱导了小鼠肝线粒体的 dANM,并设想这里描述的分离机制提供了未来细胞器、纳米颗粒和蛋白质纳米晶体分离所需的尺寸选择性。

相似文献

1
Deterministic Absolute Negative Mobility for Micro- and Submicrometer Particles Induced in a Microfluidic Device.
Anal Chem. 2016 Jun 7;88(11):5920-7. doi: 10.1021/acs.analchem.6b00837. Epub 2016 May 17.
2
Deterministic Ratchet for Sub-micrometer (Bio)particle Separation.
Anal Chem. 2018 Apr 3;90(7):4370-4379. doi: 10.1021/acs.analchem.7b03774. Epub 2018 Mar 23.
3
Continuous organelle separation in an insulator-based dielectrophoretic device.
Electrophoresis. 2022 Jun;43(12):1283-1296. doi: 10.1002/elps.202100326.
4
Acceleration of absolute negative mobility.
J Sep Sci. 2007 Jul;30(10):1461-7. doi: 10.1002/jssc.200600546.
5
Dielectrophoresis for manipulation of micro/nano particles in microfluidic systems.
Anal Bioanal Chem. 2010 Jan;396(1):401-20. doi: 10.1007/s00216-009-2922-6. Epub 2009 Jul 4.
6
Low-frequency electrokinetics in a periodic pillar array for particle separation.
J Chromatogr A. 2023 Sep 13;1706:464240. doi: 10.1016/j.chroma.2023.464240. Epub 2023 Jul 28.
8
9
Numerical modeling reveals improved organelle separation for dielectrophoretic ratchet migration.
Electrophoresis. 2023 Dec;44(23):1826-1836. doi: 10.1002/elps.202300091. Epub 2023 Aug 25.
10
Continuous separation of colloidal particles using dielectrophoresis.
Electrophoresis. 2013 Apr;34(7):969-78. doi: 10.1002/elps.201200466. Epub 2013 Mar 11.

引用本文的文献

1
Assessing the Discriminatory Capabilities of iEK Devices under DC and DC-Biased AC Stimulation Potentials.
Micromachines (Basel). 2023 Dec 14;14(12):2239. doi: 10.3390/mi14122239.
2
Modular microfluidics for life sciences.
J Nanobiotechnology. 2023 Mar 11;21(1):85. doi: 10.1186/s12951-023-01846-x.
3
Continuous organelle separation in an insulator-based dielectrophoretic device.
Electrophoresis. 2022 Jun;43(12):1283-1296. doi: 10.1002/elps.202100326.
6
Tunable particle separation via deterministic absolute negative mobility.
Sci Rep. 2020 Oct 6;10(1):16639. doi: 10.1038/s41598-020-73470-w.
7
Low frequency cyclical potentials for fine tuning insulator-based dielectrophoretic separations.
Biomicrofluidics. 2019 Aug 29;13(4):044114. doi: 10.1063/1.5115153. eCollection 2019 Jul.
8
Deterministic Ratchet for Sub-micrometer (Bio)particle Separation.
Anal Chem. 2018 Apr 3;90(7):4370-4379. doi: 10.1021/acs.analchem.7b03774. Epub 2018 Mar 23.

本文引用的文献

1
Nanohole Array-Directed Trapping of Mammalian Mitochondria Enabling Single Organelle Analysis.
Anal Chem. 2015 Dec 15;87(24):11973-7. doi: 10.1021/acs.analchem.5b03604. Epub 2015 Dec 4.
2
High Speed Size Sorting of Subcellular Organelles by Flow Field-Flow Fractionation.
Anal Chem. 2015 Jun 16;87(12):6342-8. doi: 10.1021/acs.analchem.5b01207. Epub 2015 Jun 2.
3
Insulator-based dielectrophoresis of mitochondria.
Biomicrofluidics. 2014 Mar 3;8(2):021801. doi: 10.1063/1.4866852. eCollection 2014 Mar.
4
Temporal and spatial temperature measurement in insulator-based dielectrophoretic devices.
Anal Chem. 2014 Jul 1;86(13):6516-24. doi: 10.1021/ac501083h. Epub 2014 Jun 12.
5
Transitioning Streaming to Trapping in DC Insulator-based Dielectrophoresis for Biomolecules.
Sens Actuators B Chem. 2012 Oct;173:668-675. doi: 10.1016/j.snb.2012.07.080.
6
Review on recent advances in the analysis of isolated organelles.
Anal Chim Acta. 2012 Nov 13;753:8-18. doi: 10.1016/j.aca.2012.09.041. Epub 2012 Oct 1.
8
Insulator-based dielectrophoretic single particle and single cancer cell trapping.
Electrophoresis. 2011 Sep;32(18):2550-8. doi: 10.1002/elps.201100066. Epub 2011 Aug 23.
9
Immunoglobulin G and bovine serum albumin streaming dielectrophoresis in a microfluidic device.
Electrophoresis. 2011 Sep;32(17):2314-22. doi: 10.1002/elps.201100037. Epub 2011 Jul 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验