Suppr超能文献

氧化物的催化活性和稳定性:近表面原子结构和组成的作用。

Catalytic Activity and Stability of Oxides: The Role of Near-Surface Atomic Structures and Compositions.

机构信息

Department of Materials Science and Engineering, University of Wisconsin-Madison , 1509 University Avenue, Madison, Wisconsin 53706, United States.

Racah Institute of Physics, Hebrew University , Jerusalem 91904, Israel.

出版信息

Acc Chem Res. 2016 May 17;49(5):966-73. doi: 10.1021/acs.accounts.5b00555. Epub 2016 May 5.

Abstract

Electrocatalysts play an important role in catalyzing the kinetics for oxygen reduction and oxygen evolution reactions for many air-based energy storage and conversion devices, such as metal-air batteries and fuel cells. Although noble metals have been extensively used as electrocatalysts, their limited natural abundance and high costs have motivated the search for more cost-effective catalysts. Oxides are suitable candidates since they are relatively inexpensive and have shown reasonably high activity for various electrochemical reactions. However, a lack of fundamental understanding of the reaction mechanisms has been a major hurdle toward improving electrocatalytic activity. Detailed studies of the oxide surface atomic structure and chemistry (e.g., cation migration) can provide much needed insights for the design of highly efficient and stable oxide electrocatalysts. In this Account, we focus on recent advances in characterizing strontium (Sr) cation segregation and enrichment near the surface of Sr-substituted perovskite oxides under different operating conditions (e.g., high temperature, applied potential), as well as their influence on the surface oxygen exchange kinetics at elevated temperatures. We contrast Sr segregation, which is associated with Sr redistribution in the crystal lattice near the surface, with Sr enrichment, which involves Sr redistribution via the formation of secondary phases. The newly developed coherent Bragg rod analysis (COBRA) and energy-modulated differential COBRA are uniquely powerful ways of providing information about surface and interfacial cation segregation at the atomic scale for these thin film electrocatalysts. In situ ambient pressure X-ray photoelectron spectroscopy (APXPS) studies under electrochemical operating conditions give additional insights into cation migration. Direct COBRA and APXPS evidence for surface Sr segregation was found for La1-xSrxCoO3-δ and (La1-ySry)2CoO4±δ/La1-xSrxCoO3-δ oxide thin films, and the physical origin of segregation is discussed in comparison with (La1-ySry)2CoO4±δ/La1-xSrxCo0.2Fe0.8O3-δ. Sr enrichment in many electrocatalysts, such as La1-xSrxMO3-δ (M = Cr, Co, Mn, or Co and Fe) and Sm1-xSrxCoO3, has been probed using alternative techniques, including low energy ion scattering, secondary ion mass spectrometry, and X-ray fluorescence-based methods for depth-dependent, element-specific analysis. We highlight a strong connection between cation segregation and electrocatalytic properties, because cation segregation enhances oxygen transport and surface oxygen exchange kinetics. On the other hand, the formation of cation-enriched secondary phases can lead to the blocking of active sites, inhibiting oxygen exchange. With help from density functional theory, the links between cation migration, catalyst stability, and catalytic activity are provided, and the oxygen p-band center relative to the Fermi level can be identified as an activity descriptor. Based on these findings, we discuss strategies to increase a catalyst's activity while maintaining stability to design efficient, cost-effective electrocatalysts.

摘要

电催化剂在催化许多基于空气的储能和转换设备(如金属-空气电池和燃料电池)中的氧还原和氧析出反应动力学方面发挥着重要作用。尽管贵金属已被广泛用作电催化剂,但由于其天然丰度有限且成本高昂,因此人们一直在寻找更具成本效益的催化剂。氧化物是合适的候选物,因为它们相对便宜,并且在各种电化学反应中表现出相当高的活性。然而,对反应机制缺乏基本的了解一直是提高电催化活性的主要障碍。对氧化物表面原子结构和化学性质(例如,阳离子迁移)的详细研究可以为设计高效稳定的氧化物电催化剂提供急需的见解。在本综述中,我们重点介绍了在不同工作条件(例如高温、施加的电势)下,锶取代钙钛矿氧化物表面附近的锶阳离子偏析和富集,以及它们对高温下表面氧交换动力学的影响的最新进展。我们将与表面有关的锶偏析(与表面附近晶格中的锶重分布有关)与涉及通过形成次级相进行的锶再分布的锶富集进行对比。新开发的相干布拉格棒分析(COBRA)和能量调制差分 COBRA 是为这些薄膜电催化剂提供表面和界面阳离子偏析原子尺度信息的独特强大方法。在电化学工作条件下进行的原位常压 X 射线光电子能谱(APXPS)研究提供了对阳离子迁移的更多见解。在 La1-xSrxCoO3-δ 和(La1-ySry)2CoO4±δ/La1-xSrxCoO3-δ 氧化物薄膜中发现了表面 Sr 偏析的直接 COBRA 和 APXPS 证据,并且与(La1-ySry)2CoO4±δ/La1-xSrxCo0.2Fe0.8O3-δ 相比,讨论了偏析的物理起源。La1-xSrxMO3-δ(M = Cr、Co、Mn 或 Co 和 Fe)和 Sm1-xSrxCoO3 等许多电催化剂中的 Sr 富集已通过包括低能离子散射、二次离子质谱和基于 X 射线荧光的深度相关元素特异性分析在内的替代技术进行了探测。我们强调了阳离子偏析与电催化性能之间的紧密联系,因为阳离子偏析增强了氧传输和表面氧交换动力学。另一方面,富阳离子的次生相的形成会导致活性位点的阻塞,从而抑制氧交换。借助密度泛函理论,提供了阳离子迁移、催化剂稳定性和催化活性之间的联系,并确定了氧 p 带中心相对于费米能级作为活性描述符。基于这些发现,我们讨论了提高催化剂活性同时保持稳定性以设计高效、具有成本效益的电催化剂的策略。

相似文献

1
Catalytic Activity and Stability of Oxides: The Role of Near-Surface Atomic Structures and Compositions.
Acc Chem Res. 2016 May 17;49(5):966-73. doi: 10.1021/acs.accounts.5b00555. Epub 2016 May 5.
2
Anomalous Interface and Surface Strontium Segregation in (La1-ySry)2CoO4±δ/La1-xSrxCoO3-δ Heterostructured Thin Films.
J Phys Chem Lett. 2014 Mar 20;5(6):1027-34. doi: 10.1021/jz500293d. Epub 2014 Mar 7.
3
Effect of Sr Content and Strain on Sr Surface Segregation of LaSrCoFeO as Cathode Material for Solid Oxide Fuel Cells.
ACS Appl Mater Interfaces. 2016 Oct 12;8(40):26704-26711. doi: 10.1021/acsami.6b07118. Epub 2016 Sep 28.
4
Unraveling the Correlation between the Interface Structures and Tunable Magnetic Properties of LaSrCoO/LaSrMnO Bilayers Using Deep Learning Models.
ACS Appl Mater Interfaces. 2024 Jun 12;16(23):30166-30175. doi: 10.1021/acsami.3c18773. Epub 2024 May 23.
5
Platinum-based oxygen reduction electrocatalysts.
Acc Chem Res. 2013 Aug 20;46(8):1848-57. doi: 10.1021/ar300359w. Epub 2013 Jun 28.
6
Surface and Interface Engineering of Noble-Metal-Free Electrocatalysts for Efficient Energy Conversion Processes.
Acc Chem Res. 2017 Apr 18;50(4):915-923. doi: 10.1021/acs.accounts.6b00635. Epub 2017 Feb 16.
9
Synthesis of LaSrCoO and its catalytic oxidation of NO and its reaction path.
Heliyon. 2024 Jul 3;10(14):e33580. doi: 10.1016/j.heliyon.2024.e33580. eCollection 2024 Jul 30.
10
Systematic Study of Oxygen Evolution Activity and Stability on LaSr FeO Perovskite Electrocatalysts in Alkaline Media.
ACS Appl Mater Interfaces. 2018 Apr 11;10(14):11715-11721. doi: 10.1021/acsami.8b00682. Epub 2018 Mar 29.

引用本文的文献

1
The Restructuring-Induced CoO Catalyst for Electrochemical Water Splitting.
JACS Au. 2021 Nov 2;1(12):2216-2223. doi: 10.1021/jacsau.1c00346. eCollection 2021 Dec 27.
2
Impurity Segregation and Nanoparticle Reorganization of Indium Doped MgO Cubes.
ChemNanoMat. 2019 May;5(5):634-641. doi: 10.1002/cnma.201900077. Epub 2019 Apr 3.
3
Active sites of copper-complex catalytic materials for electrochemical carbon dioxide reduction.
Nat Commun. 2018 Jan 29;9(1):415. doi: 10.1038/s41467-018-02819-7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验