Zwijnenburg Martijn A, Berardo Enrico, Peveler William J, Jelfs Kim E
Department of Chemistry, University College London , 20 Gordon Street, London WC1H 0AJ, U.K.
Department of Chemistry, Imperial College London , South Kensington, London SW7 2AZ, U.K.
J Phys Chem B. 2016 Jun 9;120(22):5063-72. doi: 10.1021/acs.jpcb.6b03059. Epub 2016 May 26.
We investigate using a computational approach the physical and chemical processes underlying the application of organic (macro)molecules as fluorescence quenching sensors for explosives sensing. We concentrate on the use of amine molecular cages to sense nitroaromatic analytes, such as picric acid and 2,4-dinitrophenol, through fluorescence quenching. Our observations for this model system hold for many related systems. We consider the different possible mechanisms of fluorescence quenching: Förster resonance energy transfer, Dexter energy transfer and photoinduced electron transfer, and show that in the case of our model system, the fluorescence quenching is driven by the latter and involves stable supramolecular sensor-analyte host-guest complexes. Furthermore, we demonstrate that the experimentally observed selectivity of amine molecular cages for different explosives can be explained by the stability of these host-guest complexes and discuss how this is related to the geometry of the binding site in the sensor. Finally, we discuss what our observations mean for explosive sensing by fluorescence quenching in general and how this can help in future rational design of new supramolecular detection systems.
我们采用计算方法研究了将有机(大分子)作为爆炸物传感荧光猝灭传感器应用的物理和化学过程。我们专注于利用胺分子笼通过荧光猝灭来检测硝基芳香族分析物,如苦味酸和2,4 - 二硝基苯酚。我们对该模型系统的观察结果适用于许多相关系统。我们考虑了荧光猝灭的不同可能机制:福斯特共振能量转移、德克斯特能量转移和光诱导电子转移,并表明在我们的模型系统中,荧光猝灭是由后者驱动的,且涉及稳定的超分子传感器 - 分析物主客体复合物。此外,我们证明了胺分子笼对不同爆炸物的实验观察到的选择性可以通过这些主客体复合物的稳定性来解释,并讨论了这与传感器中结合位点的几何形状有何关系。最后,我们讨论了我们的观察结果对一般荧光猝灭爆炸物传感意味着什么,以及这如何有助于未来合理设计新的超分子检测系统。