Suppr超能文献

TLR2共受体介导的差异衔接蛋白募集

Differential adapter recruitment by TLR2 co-receptors.

作者信息

Piao Wenji, Ru Lisa W, Toshchakov Vladimir Y

机构信息

Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 West Baltimore St., HSFI, Baltimore, MD 21201, USA.

Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 West Baltimore St., HSFI, Baltimore, MD 21201, USA

出版信息

Pathog Dis. 2016 Jul;74(5). doi: 10.1093/femspd/ftw043. Epub 2016 May 4.

Abstract

TLR2 heterodimers with TLR1 or TLR6 recognize distinct pathogen-associated molecules such as tri- and di-acylated lipopeptides. The activated TLR2 heterodimers recruit Toll-IL-1R domain- (TIR-) containing adapter proteins, TIRAP and MyD88, through the receptor TIR domains. Molecular recognition mechanisms responsible for agonist-driven, TIR domain-mediated receptor-adapter interactions as well as the structure of resultant signaling complexes remain unknown. We previously reported that the cell-permeable peptide derived from helix D of TLR2 TIR (2R9) specifically binds TIRAP in vitro and in cells and thereby inhibits TIRAP-dependent TLR signaling. This study demonstrates that cell-permeable peptides from D helix of TLR1 or TLR6, peptides 1R9 and 6R9 respectively, inhibit signaling mediated by cognate TLR2 co-receptors. Interestingly, 1R9 and 6R9 bind different TLR2 adapters, as they selectively bind MyD88 and TIRAP TIR, respectively. Both peptides block the agonist-induced co-immunoprecipitation (co-IP) of TLR2 with TIRAP or MyD88, but not TLR2 co-IP with co-receptors. Our data suggest that D helices of TLR1 and TLR6 TIR domains are adapter recruitment sites in both co-receptors; yet the sites recruit different adapters. The D helix in TLR1 is the MyD88 docking site, whereas in TLR6 this site recruits TIRAP.

摘要

TLR2与TLR1或TLR6形成的异二聚体可识别不同的病原体相关分子,如三酰化和二酰化脂肽。活化的TLR2异二聚体通过受体TIR结构域招募含Toll-IL-1R结构域(TIR)的接头蛋白TIRAP和MyD88。负责激动剂驱动的、TIR结构域介导的受体-接头相互作用的分子识别机制以及由此产生的信号复合物的结构仍然未知。我们之前报道过,源自TLR2 TIR螺旋D的细胞穿透肽(2R9)在体外和细胞内特异性结合TIRAP,从而抑制TIRAP依赖的TLR信号传导。本研究表明,分别来自TLR1或TLR6 D螺旋的细胞穿透肽,即肽1R9和6R9,可抑制同源TLR2共受体介导的信号传导。有趣的是,1R9和6R9结合不同的TLR2接头蛋白,因为它们分别选择性地结合MyD88和TIRAP的TIR。这两种肽均阻断激动剂诱导的TLR2与TIRAP或MyD88的共免疫沉淀(co-IP),但不阻断TLR2与共受体的co-IP。我们的数据表明,TLR1和TLR6 TIR结构域的D螺旋是两种共受体中的接头蛋白招募位点;然而,这些位点招募不同的接头蛋白。TLR1中的D螺旋是MyD88对接位点,而在TLR6中该位点招募TIRAP。

相似文献

1
Differential adapter recruitment by TLR2 co-receptors.
Pathog Dis. 2016 Jul;74(5). doi: 10.1093/femspd/ftw043. Epub 2016 May 4.
3
In silico approach to inhibition of signaling pathways of Toll-like receptors 2 and 4 by ST2L.
PLoS One. 2011;6(8):e23989. doi: 10.1371/journal.pone.0023989. Epub 2011 Aug 29.
6
Molecular analysis of the binding mode of Toll/interleukin-1 receptor (TIR) domain proteins during TLR2 signaling.
Mol Immunol. 2012 Oct;52(3-4):108-16. doi: 10.1016/j.molimm.2012.05.003. Epub 2012 Jun 4.
7
Crystal structure of the TLR1-TLR2 heterodimer induced by binding of a tri-acylated lipopeptide.
Cell. 2007 Sep 21;130(6):1071-82. doi: 10.1016/j.cell.2007.09.008.
8
Lipopeptides are signaled by Toll-like receptor 1, 2 and 6 in endolysosomes.
Int Immunol. 2014 Oct;26(10):563-73. doi: 10.1093/intimm/dxu054. Epub 2014 May 24.
9
A Decoy Peptide that Disrupts TIRAP Recruitment to TLRs Is Protective in a Murine Model of Influenza.
Cell Rep. 2015 Jun 30;11(12):1941-52. doi: 10.1016/j.celrep.2015.05.035. Epub 2015 Jun 18.
10
Microcrystal electron diffraction structure of Toll-like receptor 2 TIR-domain-nucleated MyD88 TIR-domain higher-order assembly.
Acta Crystallogr D Struct Biol. 2024 Sep 1;80(Pt 9):699-712. doi: 10.1107/S2059798324008210. Epub 2024 Sep 4.

引用本文的文献

1
Label-free biosensor assay decodes the dynamics of Toll-like receptor signaling.
Nat Commun. 2024 Nov 12;15(1):9554. doi: 10.1038/s41467-024-53770-9.
2
4
Microbial metabolites indole derivatives sensitize mice to D-GalN/LPS induced-acute liver failure the Tlr2/NF-κB pathway.
Front Microbiol. 2023 Jan 6;13:1103998. doi: 10.3389/fmicb.2022.1103998. eCollection 2022.
5
Characterization of extracellular vesicles from Lactiplantibacillus plantarum.
Sci Rep. 2022 Aug 8;12(1):13330. doi: 10.1038/s41598-022-17629-7.
6
A Toll-like Receptor-Activating, Self-Adjuvant Glycan Nanocarrier.
Front Chem. 2022 May 3;10:864206. doi: 10.3389/fchem.2022.864206. eCollection 2022.
7
Tankyrase represses autoinflammation through the attenuation of TLR2 signaling.
J Clin Invest. 2022 Apr 1;132(7). doi: 10.1172/JCI140869.
8
Bacterial Lipoproteins Induce BAFF Production TLR2/MyD88/JNK Signaling Pathways in Dendritic Cells.
Front Immunol. 2020 Oct 2;11:564699. doi: 10.3389/fimmu.2020.564699. eCollection 2020.
10
The Role of Toll-Like Receptors in Skin Host Defense, Psoriasis, and Atopic Dermatitis.
J Immunol Res. 2019 Nov 14;2019:1824624. doi: 10.1155/2019/1824624. eCollection 2019.

本文引用的文献

1
In Vitro Reconstitution of the Toll/Interleukin-1 Receptor (TIR) Domain Complex Between TLR5/6 and Myd88.
Protein Pept Lett. 2016;23(1):55-62. doi: 10.2174/0929866523666151106123613.
2
A Decoy Peptide that Disrupts TIRAP Recruitment to TLRs Is Protective in a Murine Model of Influenza.
Cell Rep. 2015 Jun 30;11(12):1941-52. doi: 10.1016/j.celrep.2015.05.035. Epub 2015 Jun 18.
3
Inhibition of TLR2 signaling by small molecule inhibitors targeting a pocket within the TLR2 TIR domain.
Proc Natl Acad Sci U S A. 2015 Apr 28;112(17):5455-60. doi: 10.1073/pnas.1422576112. Epub 2015 Apr 13.
4
Assembly and localization of Toll-like receptor signalling complexes.
Nat Rev Immunol. 2014 Aug;14(8):546-58. doi: 10.1038/nri3713.
6
Recruitment of TLR adapter TRIF to TLR4 signaling complex is mediated by the second helical region of TRIF TIR domain.
Proc Natl Acad Sci U S A. 2013 Nov 19;110(47):19036-41. doi: 10.1073/pnas.1313575110. Epub 2013 Nov 5.
8
Inhibition of TLR4 signaling by TRAM-derived decoy peptides in vitro and in vivo.
J Immunol. 2013 Mar 1;190(5):2263-72. doi: 10.4049/jimmunol.1202703. Epub 2013 Jan 23.
9
The neurotoxic effect of astrocytes activated with toll-like receptor ligands.
J Neuroimmunol. 2013 Jan 15;254(1-2):10-8. doi: 10.1016/j.jneuroim.2012.08.010. Epub 2012 Sep 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验