Suppr超能文献

通过隐马尔可夫模型检测复杂生物系统相变前的临界状态。

Detecting critical state before phase transition of complex biological systems by hidden Markov model.

机构信息

School of Computer Science and Engineering.

School of Mathematics, South China University of Technology, Guangzhou 510640, China.

出版信息

Bioinformatics. 2016 Jul 15;32(14):2143-50. doi: 10.1093/bioinformatics/btw154. Epub 2016 Mar 19.

Abstract

MOTIVATION

Identifying the critical state or pre-transition state just before the occurrence of a phase transition is a challenging task, because the state of the system may show little apparent change before this critical transition during the gradual parameter variations. Such dynamics of phase transition is generally composed of three stages, i.e. before-transition state, pre-transition state and after-transition state, which can be considered as three different Markov processes.

RESULTS

By exploring the rich dynamical information provided by high-throughput data, we present a novel computational method, i.e. hidden Markov model (HMM) based approach, to detect the switching point of the two Markov processes from the before-transition state (a stationary Markov process) to the pre-transition state (a time-varying Markov process), thereby identifying the pre-transition state or early-warning signals of the phase transition. To validate the effectiveness, we apply this method to detect the signals of the imminent phase transitions of complex systems based on the simulated datasets, and further identify the pre-transition states as well as their critical modules for three real datasets, i.e. the acute lung injury triggered by phosgene inhalation, MCF-7 human breast cancer caused by heregulin and HCV-induced dysplasia and hepatocellular carcinoma. Both functional and pathway enrichment analyses validate the computational results.

AVAILABILITY AND IMPLEMENTATION

The source code and some supporting files are available at https://github.com/rabbitpei/HMM_based-method

CONTACTS

lnchen@sibs.ac.cn or liyj@scut.edu.cn

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

识别相变发生前的关键状态或预过渡状态是一项具有挑战性的任务,因为在这个关键相变之前,系统的状态在逐渐改变参数的过程中可能几乎没有明显的变化。这种相变动力学通常由三个阶段组成,即相变前状态、预相变状态和相变后状态,可以看作是三个不同的马尔可夫过程。

结果

通过探索高通量数据提供的丰富动态信息,我们提出了一种新的计算方法,即基于隐马尔可夫模型(HMM)的方法,用于从相变前状态(一个静态马尔可夫过程)到预相变状态(一个时变马尔可夫过程)检测两个马尔可夫过程的切换点,从而识别预相变状态或相变的预警信号。为了验证有效性,我们应用该方法基于模拟数据集检测复杂系统的即将发生的相变信号,并进一步识别预相变状态及其关键模块,用于三个真实数据集,即光气吸入引发的急性肺损伤、人乳腺癌 MCF-7 由人表皮生长因子受体 2 (HER2)引起的和丙型肝炎病毒(HCV)诱导的发育不良和肝细胞癌。功能和途径富集分析验证了计算结果。

可用性和实现

源代码和一些支持文件可在 https://github.com/rabbitpei/HMM_based-method 上获得。

联系方式

lnchen@sibs.ac.cnliyj@scut.edu.cn

补充信息

补充数据可在《生物信息学》在线获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验