Kulakhmetov Marat, Gallis Michael, Alexeenko Alina
Aeronautics and Astronautics, Purdue University, West Lafayette, Indiana 47907, USA.
Engineering Sciences Center, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA.
J Chem Phys. 2016 May 7;144(17):174302. doi: 10.1063/1.4947590.
Quasi-classical trajectory (QCT) calculations are used to study state-specific ro-vibrational energy exchange and dissociation in the O2 + O system. Atom-diatom collisions with energy between 0.1 and 20 eV are calculated with a double many body expansion potential energy surface by Varandas and Pais [Mol. Phys. 65, 843 (1988)]. Inelastic collisions favor mono-quantum vibrational transitions at translational energies above 1.3 eV although multi-quantum transitions are also important. Post-collision vibrational favoring decreases first exponentially and then linearly as Δv increases. Vibrationally elastic collisions (Δv = 0) favor small ΔJ transitions while vibrationally inelastic collisions have equilibrium post-collision rotational distributions. Dissociation exhibits both vibrational and rotational favoring. New vibrational-translational (VT), vibrational-rotational-translational (VRT) energy exchange, and dissociation models are developed based on QCT observations and maximum entropy considerations. Full set of parameters for state-to-state modeling of oxygen is presented. The VT energy exchange model describes 22 000 state-to-state vibrational cross sections using 11 parameters and reproduces vibrational relaxation rates within 30% in the 2500-20 000 K temperature range. The VRT model captures 80 × 10(6) state-to-state ro-vibrational cross sections using 19 parameters and reproduces vibrational relaxation rates within 60% in the 5000-15 000 K temperature range. The developed dissociation model reproduces state-specific and equilibrium dissociation rates within 25% using just 48 parameters. The maximum entropy framework makes it feasible to upscale ab initio simulation to full nonequilibrium flow calculations.
准经典轨迹(QCT)计算用于研究O₂ + O系统中特定状态的转动-振动能量交换和解离。Varandas和Pais [《分子物理学》65, 843 (1988)] 使用双多体展开势能面计算了能量在0.1至20 eV之间的原子-双原子碰撞。非弹性碰撞在平移能量高于1.3 eV时有利于单量子振动跃迁,尽管多量子跃迁也很重要。碰撞后振动偏好先呈指数下降,然后随着Δv的增加呈线性下降。振动弹性碰撞(Δv = 0)有利于小的ΔJ跃迁,而振动非弹性碰撞具有平衡的碰撞后转动分布。解离同时表现出振动和转动偏好。基于QCT观测和最大熵考虑,开发了新的振动-平移(VT)、振动-转动-平移(VRT)能量交换和解离模型。给出了氧气状态到状态建模的全套参数。VT能量交换模型使用11个参数描述了22000个状态到状态的振动截面,并在2500 - 20000 K温度范围内将振动弛豫率的再现误差控制在30%以内。VRT模型使用19个参数捕获了80×10⁶个状态到状态的转动-振动截面,并在5000 - 15000 K温度范围内将振动弛豫率的再现误差控制在60%以内。所开发的解离模型仅使用48个参数就将特定状态和平衡解离率的再现误差控制在25%以内。最大熵框架使将从头算模拟扩展到完全非平衡流计算成为可能。