Sadakane Yutaka, Hatanaka Yasumaru
School of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka 513-8670, Japan.
Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan.
Anal Biochem. 2016 Aug 1;506:1-7. doi: 10.1016/j.ab.2016.04.016. Epub 2016 May 5.
Photoaffinity cross-linking enables the analysis of interactions between DNA and proteins even under denaturing conditions. We present a photoaffinity electrophoretic mobility shift assay (EMSA) in which two heterogeneous techniques-photoaffinity cross-linking using DNA bearing 3-trifluoromethyl-3-phenyldiazirine and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis-are combined. To prepare the photoreactive DNA, which is an essential tool for photoaffinity EMSA, we first determined the optimal conditions for the integration of 4-(3-trifluoromethyl-3H-diazirin-3-yl)benzyl bromide to the specific site of oligonucleotide where phosphodiester linkage was replaced with phosphorothioate linkage. The photoaffinity EMSA was developed using the POU (initial letters of three genes: Pit-l, Oct-1,2, and unc-86) domain region of Oct-1 protein, which specifically bound to octamer DNA motif (ATGCAAAT). The affinity-purified recombinant POU domain proteins conjugated with glutathione-S-transferase (GST) contained three distinct proteins with molecular weights of 34, 36, and 45 kDa. The photoaffinity EMSA could clearly distinguish the individual binding abilities of three proteins on a single lane and showed that the whole POU domain protein specifically bound to octamer DNA motif by competition experiments. Using the nuclear extract of HeLa cells, the photoaffinity EMSA revealed that at least five specific proteins could bind to the octamer DNA motif. These results show that photoaffinity EMSA using 3-trifluoromethyl-3-phenyldiazirine can provide high-performance analysis of DNA-binding proteins.
光亲和交联即使在变性条件下也能分析DNA与蛋白质之间的相互作用。我们提出了一种光亲和电泳迁移率变动分析(EMSA)方法,该方法结合了两种不同的技术——使用带有3-三氟甲基-3-苯基重氮甲烷的DNA进行光亲和交联和十二烷基硫酸钠聚丙烯酰胺凝胶电泳(SDS-PAGE)分析。为了制备光反应性DNA(这是光亲和EMSA的关键工具),我们首先确定了将4-(3-三氟甲基-3H-重氮甲烷-3-基)苄基溴整合到寡核苷酸特定位点的最佳条件,该位点的磷酸二酯键被硫代磷酸酯键取代。光亲和EMSA是利用Oct-1蛋白的POU(三个基因Pit-1、Oct-1,2和unc-86的首字母)结构域区域开发的,该区域能特异性结合八聚体DNA基序(ATGCAAAT)。与谷胱甘肽-S-转移酶(GST)偶联的亲和纯化重组POU结构域蛋白包含三种不同的蛋白,分子量分别为34、36和45 kDa。光亲和EMSA可以在单一条带上清晰地区分这三种蛋白的各自结合能力,并且通过竞争实验表明整个POU结构域蛋白能特异性结合八聚体DNA基序。利用HeLa细胞核提取物,光亲和EMSA显示至少有五种特异性蛋白能结合八聚体DNA基序。这些结果表明,使用3-三氟甲基-3-苯基重氮甲烷的光亲和EMSA能够对DNA结合蛋白进行高性能分析。