Kumawat Manoj, Pesingi Pavan Kumar, Agarwal Rajesh Kumar, Goswami Tapas Kumar, Mahawar Manish
Division of Biochemistry, Indian Veterinary Research Institute (IVRI), Izatnagar, UP 243 122 India.
Division of Veterinary Public Health, Indian Veterinary Research Institute (IVRI), Izatnagar, UP 243 122 India.
Int J Med Microbiol. 2016 Jun;306(4):222-30. doi: 10.1016/j.ijmm.2016.04.005. Epub 2016 Apr 29.
The enteric pathogen Salmonella Typhimurium (ST) survives inside the oxidative environment of phagocytic cells. Phagocyte generated oxidants primarily target proteins and modify amino acids in them. These modifications render the targeted proteins functionally inactive. Conversion of Asp to iso-Asp is one of the several known oxidant mediated amino acids modifications. By repairing iso-Asp to Asp, protein-isoaspartyl methyltransferase (PIMT) maintains the activities of proteins and thus helps in cellular survival under oxidative stress. To elucidate the role of PIMT in ST survival under oxidative stress, we have constructed a pimt gene deletion strain (Δpimt strain) of ST. The Δpimt strain grows normally in various culture media in vitro. However, in comparison to wild type ST, the Δpimt strain is found significantly (p<0.001) more susceptible to H2O2 and hypochlorite (HOCl). Further, the Δpimt mutant strain shows hypersusceptibility (p<0.001) to INF-γ stimulated macrophages. This susceptibility is reversed by pharmacological inhibition of reactive oxygen species (ROS) but not reactive nitrogen species (RNS) production. Further, plasmid based complementation enhances the survival of Δpimt mutant strain against oxidants in vitro and also inside the macrophages. In mice model, the LD50 for wild type ST and mutant Δpimt has been 1.73×10(4) and 1.38×10(5), respectively. Further, the mutant strain shows reduced dissemination to spleen and liver in mice. Following infection with a mixture of wild type ST and the Δpimt mutant (co-infection experiment), we recover significantly (p<0.001) less numbers of mutant bacteria from the spleen and liver of mice.
肠道病原体鼠伤寒沙门氏菌(ST)能在吞噬细胞的氧化环境中存活。吞噬细胞产生的氧化剂主要作用于蛋白质并修饰其中的氨基酸。这些修饰会使目标蛋白质失去功能活性。天冬氨酸(Asp)向异天冬氨酸(iso - Asp)的转化是几种已知的氧化剂介导的氨基酸修饰之一。通过将异天冬氨酸修复成天冬氨酸,蛋白质异天冬氨酰甲基转移酶(PIMT)维持蛋白质的活性,从而有助于细胞在氧化应激下存活。为了阐明PIMT在ST氧化应激下存活中的作用,我们构建了ST的pimt基因缺失菌株(Δpimt菌株)。Δpimt菌株在体外各种培养基中生长正常。然而,与野生型ST相比,Δpimt菌株对过氧化氢(H2O2)和次氯酸盐(HOCl)的敏感性显著更高(p<0.001)。此外,Δpimt突变菌株对干扰素 - γ(INF - γ)刺激的巨噬细胞表现出超敏感性(p<0.001)。这种敏感性可通过对活性氧(ROS)而非活性氮(RNS)产生的药理学抑制来逆转。此外,基于质粒的互补作用增强了Δpimt突变菌株在体外和巨噬细胞内对抗氧化剂的存活能力。在小鼠模型中,野生型ST和突变体Δpimt的半数致死剂量(LD50)分别为1.73×10⁴ 和1.38×10⁵。此外,突变菌株在小鼠体内向脾脏和肝脏的扩散减少。在用野生型ST和Δpimt突变体的混合物感染后(共感染实验),我们从小鼠的脾脏和肝脏中回收的突变细菌数量显著减少(p<0.001)。