Applied Energy Materials Group, Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States.
Argonne National Laboratory , Chicago, Illinois 60439, United States.
ACS Appl Mater Interfaces. 2016 Jun 1;8(21):13373-7. doi: 10.1021/acsami.6b00312. Epub 2016 May 17.
A SiOSnCoC composite anode is assembled using a conductive polymer binder for the application in next-generation high energy density lithium-ion batteries. A specific capacity of 700 mAh/g is achieved at a 1C (900 mA/g) rate. A high active material loading anode with an areal capacity of 3.5 mAh/cm(2) is demonstrated by mixing SiOSnCoC with graphite. To compensate for the lithium loss in the first cycle, stabilized lithium metal powder (SLMP) is used for prelithiation; when paired with a commercial cathode, a stable full cell cycling performance with a 86% first cycle efficiency is realized. By achieving these important metrics toward a practical application, this conductive polymer binder/SiOSnCoC anode system presents great promise to enable the next generation of high-energy lithium-ion batteries.
采用导电聚合物粘结剂组装 SiOSnCoC 复合阳极,应用于下一代高能量密度锂离子电池。在 1C(900mA/g)的倍率下,实现了 700mAh/g 的比容量。通过将 SiOSnCoC 与石墨混合,实现了具有 3.5mAh/cm(2)面容量的高活性材料负载阳极。为了补偿首循环中的锂损失,使用稳定化锂金属粉末(SLMP)进行预锂化;与商业阴极配对时,实现了 86%的首循环效率的稳定全电池循环性能。通过实现这些朝着实际应用的重要指标,这种导电聚合物粘结剂/SiOSnCoC 阳极系统有望实现下一代高能锂离子电池。