Lopez Perez Ramon, Best Gerrit, Nicolay Nils H, Greubel Christoph, Rossberger Sabrina, Reindl Judith, Dollinger Günther, Weber Klaus-Josef, Cremer Christoph, Huber Peter E
Clinical Cooperation Unit and Molecular Radiation Oncology, German Cancer Research Center, Heidelberg University Hospital, Heidelberg, Germany; Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany;
Department of Ophthalmology, Heidelberg University Hospital, Heidelberg, Germany; Kirchhoff-Institute for Physics, Heidelberg University, Heidelberg, Germany;
FASEB J. 2016 Aug;30(8):2767-76. doi: 10.1096/fj.201500106R. Epub 2016 May 10.
Carbon ion radiation is a promising new form of radiotherapy for cancer, but the central question about the biologic effects of charged particle radiation is yet incompletely understood. Key to this question is the understanding of the interaction of ions with DNA in the cell's nucleus. Induction and repair of DNA lesions including double-strand breaks (DSBs) are decisive for the cell. Several DSB repair markers have been used to investigate these processes microscopically, but the limited resolution of conventional microscopy is insufficient to provide structural insights. We have applied superresolution microscopy to overcome these limitations and analyze the fine structure of DSB repair foci. We found that the conventionally detected foci of the widely used DSB marker γH2AX (Ø 700-1000 nm) were composed of elongated subfoci with a size of ∼100 nm consisting of even smaller subfocus elements (Ø 40-60 nm). The structural organization of the subfoci suggests that they could represent the local chromatin structure of elementary DSB repair units at the DSB damage sites. Subfocus clusters may indicate induction of densely spaced DSBs, which are thought to be associated with the high biologic effectiveness of carbon ions. Superresolution microscopy might emerge as a powerful tool to improve our knowledge of interactions of ionizing radiation with cells.-Lopez Perez, R., Best, G., Nicolay, N. H., Greubel, C., Rossberger, S., Reindl, J., Dollinger, G., Weber, K.-J., Cremer, C., Huber, P. E. Superresolution light microscopy shows nanostructure of carbon ion radiation-induced DNA double-strand break repair foci.
碳离子辐射是一种很有前景的新型癌症放射疗法,但关于带电粒子辐射的生物学效应这一核心问题尚未完全理解。这个问题的关键在于了解离子与细胞核中DNA的相互作用。包括双链断裂(DSB)在内的DNA损伤的诱导和修复对细胞来说是决定性的。几种DSB修复标记物已被用于显微镜下研究这些过程,但传统显微镜的有限分辨率不足以提供结构上的见解。我们应用超分辨率显微镜来克服这些限制,并分析DSB修复灶的精细结构。我们发现,广泛使用的DSB标记物γH2AX的传统检测灶(直径700 - 1000纳米)由大小约为100纳米的细长亚灶组成,这些亚灶又由更小的亚灶元素(直径40 - 60纳米)组成。亚灶的结构组织表明,它们可能代表DSB损伤部位基本DSB修复单元的局部染色质结构。亚灶簇可能表明密集排列的DSB的诱导,而密集排列的DSB被认为与碳离子的高生物学效应有关。超分辨率显微镜可能会成为一种强大的工具,以增进我们对电离辐射与细胞相互作用的了解。-洛佩斯·佩雷斯,R.,贝斯特,G.,尼科莱,N. H.,格吕贝尔,C.,罗斯伯格,S.,赖因德尔,J.,多林格,G.,韦伯,K.-J.,克雷默,C.,胡伯,P. E. 超分辨率光学显微镜显示碳离子辐射诱导的DNA双链断裂修复灶的纳米结构。