Planelles-Herrero Vicente José, Blanc Florian, Sirigu Serena, Sirkia Helena, Clause Jeffrey, Sourigues Yannick, Johnsrud Daniel O, Amigues Beatrice, Cecchini Marco, Gilbert Susan P, Houdusse Anne, Titus Margaret A
Structural Motility, Institut Curie, CNRS, UMR 144, PSL Research University, F-75005 Paris, France; UPMC Université de Paris 6, Institut de Formation Doctorale, Sorbonne Universités, 75252 Paris Cedex 05, France;
Structural Motility, Institut Curie, CNRS, UMR 144, PSL Research University, F-75005 Paris, France; Laboratoire d'Ingénierie des Fonctions Moléculaires, Institut de Science et d'Ingénierie Supramoléculaires, UMR 7006 CNRS, Université de Strasbourg, F-67083 Strasbourg Cedex, France;
Proc Natl Acad Sci U S A. 2016 May 24;113(21):E2906-15. doi: 10.1073/pnas.1600736113. Epub 2016 May 10.
Myosins containing MyTH4-FERM (myosin tail homology 4-band 4.1, ezrin, radixin, moesin, or MF) domains in their tails are found in a wide range of phylogenetically divergent organisms, such as humans and the social amoeba Dictyostelium (Dd). Interestingly, evolutionarily distant MF myosins have similar roles in the extension of actin-filled membrane protrusions such as filopodia and bind to microtubules (MT), suggesting that the core functions of these MF myosins have been highly conserved over evolution. The structures of two DdMyo7 signature MF domains have been determined and comparison with mammalian MF structures reveals that characteristic features of MF domains are conserved. However, across millions of years of evolution conserved class-specific insertions are seen to alter the surfaces and the orientation of subdomains with respect to each other, likely resulting in new sites for binding partners. The MyTH4 domains of Myo10 and DdMyo7 bind to MT with micromolar affinity but, surprisingly, their MT binding sites are on opposite surfaces of the MyTH4 domain. The structural analysis in combination with comparison of diverse MF myosin sequences provides evidence that myosin tail domain features can be maintained without strict conservation of motifs. The results illustrate how tuning of existing features can give rise to new structures while preserving the general properties necessary for myosin tails. Thus, tinkering with the MF domain enables it to serve as a multifunctional platform for cooperative recruitment of various partners, allowing common properties such as autoinhibition of the motor and microtubule binding to arise through convergent evolution.
在其尾部含有MyTH4-FERM(肌球蛋白尾部同源性4-带4.1、埃兹蛋白、根蛋白、膜突蛋白,或MF)结构域的肌球蛋白存在于多种系统发育上不同的生物体中,如人类和社会性变形虫盘基网柄菌(Dd)。有趣的是,在进化上距离遥远的MF肌球蛋白在肌动蛋白填充的膜突出物(如丝状伪足)的延伸中具有相似作用,并与微管(MT)结合,这表明这些MF肌球蛋白的核心功能在进化过程中高度保守。已确定了两个盘基网柄菌肌球蛋白7(DdMyo7)标志性MF结构域的结构,与哺乳动物MF结构的比较揭示了MF结构域的特征是保守的。然而,在数百万年的进化过程中,保守的类特异性插入会改变亚结构域彼此之间的表面和方向,可能产生新的结合伴侣位点。肌球蛋白10(Myo10)和盘基网柄菌肌球蛋白7的MyTH4结构域以微摩尔亲和力与MT结合,但令人惊讶的是,它们的MT结合位点位于MyTH4结构域的相反表面。结合不同MF肌球蛋白序列比较的结构分析提供了证据,表明肌球蛋白尾部结构域特征可以在不严格保守基序的情况下得以维持。结果说明了现有特征的调整如何在保留肌球蛋白尾部所需一般特性的同时产生新结构。因此,对MF结构域进行调整使其能够作为一个多功能平台,用于协同招募各种伴侣,使得诸如马达自抑制和微管结合等共同特性能够通过趋同进化产生。