Suppr超能文献

选择性手指运动起始和维持阶段皮质脊髓兴奋性及短潜伏期传入抑制的动态调制。

Dynamic modulation of corticospinal excitability and short-latency afferent inhibition during onset and maintenance phase of selective finger movement.

作者信息

Cho Hyun Joo, Panyakaew Pattamon, Thirugnanasambandam Nivethida, Wu Tianxia, Hallett Mark

机构信息

Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.

Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; Department of Medicine, Faculty of Medicine, Chulalongkorn Center of Excellence on Parkinson Disease and Related Disorders, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok 10330, Thailand.

出版信息

Clin Neurophysiol. 2016 Jun;127(6):2343-9. doi: 10.1016/j.clinph.2016.02.020. Epub 2016 Mar 18.

Abstract

OBJECTIVE

During highly selective finger movement, corticospinal excitability is reduced in surrounding muscles at the onset of movement but this phenomenon has not been demonstrated during maintenance of movement. Sensorimotor integration may play an important role in selective movement. We sought to investigate how corticospinal excitability and short-latency afferent inhibition changes in active and surrounding muscles during onset and maintenance of selective finger movement.

METHODS

Using transcranial magnetic stimulation (TMS) and paired peripheral stimulation, input-output recruitment curve and short-latency afferent inhibition (SAI) were measured in the first dorsal interosseus and abductor digiti minimi muscles during selective index finger flexion.

RESULTS

Motor surround inhibition was present only at the onset phase, but not at the maintenance phase of movement. SAI was reduced at onset but not at the maintenance phase of movement in both active and surrounding muscles.

CONCLUSIONS

Our study showed dynamic changes in corticospinal excitability and sensorimotor modulation for active and surrounding muscles in different movement states. SAI does not appear to contribute to motor surround inhibition at the movement onset phase. Also, there seems to be different inhibitory circuit(s) other than SAI for the movement maintenance phase in order to delineate the motor output selectively when corticospinal excitability is increased in both active and surrounding muscles.

SIGNIFICANCE

This study enhances our knowledge of dynamic changes in corticospinal excitability and sensorimotor interaction in different movement states to understand normal and disordered movements.

摘要

目的

在高度选择性手指运动过程中,运动开始时周围肌肉的皮质脊髓兴奋性降低,但这种现象在运动维持期间尚未得到证实。感觉运动整合可能在选择性运动中起重要作用。我们试图研究在选择性手指运动的开始和维持过程中,主动肌和周围肌肉的皮质脊髓兴奋性及短潜伏期传入抑制如何变化。

方法

在选择性示指屈曲过程中,使用经颅磁刺激(TMS)和配对外周刺激,测量第一背侧骨间肌和小指展肌的输入-输出募集曲线及短潜伏期传入抑制(SAI)。

结果

运动周围抑制仅出现在运动开始阶段,而在运动维持阶段不存在。在运动开始时,主动肌和周围肌肉的SAI均降低,但在运动维持阶段未降低。

结论

我们的研究显示了不同运动状态下主动肌和周围肌肉的皮质脊髓兴奋性及感觉运动调制的动态变化。SAI在运动开始阶段似乎对运动周围抑制没有作用。此外,在运动维持阶段,似乎存在除SAI之外的不同抑制回路,以便在主动肌和周围肌肉的皮质脊髓兴奋性均增加时选择性地描绘运动输出。

意义

本研究增进了我们对不同运动状态下皮质脊髓兴奋性及感觉运动相互作用动态变化的认识,有助于理解正常和异常运动。

相似文献

2
Short-latency afferent inhibition during selective finger movement.
Exp Brain Res. 2006 Feb;169(2):226-31. doi: 10.1007/s00221-005-0140-9. Epub 2005 Nov 12.
3
Motor 'surround inhibition' is not correlated with activity in surround muscles.
Eur J Neurosci. 2014 Aug;40(3):2541-7. doi: 10.1111/ejn.12613. Epub 2014 May 10.
4
Effects of finger pinch motor imagery on short-latency afferent inhibition and corticospinal excitability.
Neuroreport. 2024 Apr 3;35(6):413-420. doi: 10.1097/WNR.0000000000002025. Epub 2024 Mar 7.
5
The recent history of afferent stimulation modulates corticospinal excitability.
Neuroimage. 2022 Sep;258:119365. doi: 10.1016/j.neuroimage.2022.119365. Epub 2022 Jun 9.
6
Short-latency afferent inhibition modulation during finger movement.
PLoS One. 2013 Apr 4;8(4):e60496. doi: 10.1371/journal.pone.0060496. Print 2013.
8
Transcallosal sensorimotor integration: effects of sensory input on cortical projections to the contralateral hand.
Clin Neurophysiol. 2006 Apr;117(4):855-63. doi: 10.1016/j.clinph.2005.12.012. Epub 2006 Jan 30.

引用本文的文献

2
Central nervous system physiology.
Clin Neurophysiol. 2021 Dec;132(12):3043-3083. doi: 10.1016/j.clinph.2021.09.013. Epub 2021 Oct 14.
3
Fast Intracortical Sensory-Motor Integration: A Window Into the Pathophysiology of Parkinson's Disease.
Front Hum Neurosci. 2019 Apr 8;13:111. doi: 10.3389/fnhum.2019.00111. eCollection 2019.
4
Effects of lorazepam and baclofen on short- and long-latency afferent inhibition.
J Physiol. 2018 Nov;596(21):5267-5280. doi: 10.1113/JP276710. Epub 2018 Oct 3.
5
Exploring Behavioral Correlates of Afferent Inhibition.
Brain Sci. 2018 Apr 11;8(4):64. doi: 10.3390/brainsci8040064.

本文引用的文献

2
Distinct interneuronal networks influence excitability of the surround during movement initiation.
J Neurophysiol. 2015 Aug;114(2):1102-8. doi: 10.1152/jn.00791.2014. Epub 2015 Jun 3.
3
Motor thalamus integration of cortical, cerebellar and basal ganglia information: implications for normal and parkinsonian conditions.
Front Comput Neurosci. 2013 Nov 11;7:163. doi: 10.3389/fncom.2013.00163. eCollection 2013.
4
The basal ganglia, the ideal machinery for the cost-benefit analysis of action plans.
Front Neural Circuits. 2013 Jul 22;7:121. doi: 10.3389/fncir.2013.00121. eCollection 2013.
5
Short-latency afferent inhibition modulation during finger movement.
PLoS One. 2013 Apr 4;8(4):e60496. doi: 10.1371/journal.pone.0060496. Print 2013.
6
Human brain cortical correlates of short-latency afferent inhibition: a combined EEG-TMS study.
J Neurophysiol. 2012 Jul;108(1):314-23. doi: 10.1152/jn.00796.2011. Epub 2012 Mar 28.
8
I-wave origin and modulation.
Brain Stimul. 2012 Oct;5(4):512-25. doi: 10.1016/j.brs.2011.07.008. Epub 2011 Sep 6.
9
Increased short latency afferent inhibition after anodal transcranial direct current stimulation.
Neurosci Lett. 2011 Jul 8;498(2):167-70. doi: 10.1016/j.neulet.2011.05.007. Epub 2011 May 11.
10
Transcranial magnetic stimulation in different current directions activates separate cortical circuits.
J Neurophysiol. 2011 Feb;105(2):749-56. doi: 10.1152/jn.00640.2010. Epub 2010 Dec 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验