Centre of Excellence for Functional Materials, Laboratory of Physical Chemistry, Åbo Akademi University, Finland.
Adv Colloid Interface Sci. 2016 Aug;234:89-107. doi: 10.1016/j.cis.2016.04.003. Epub 2016 Apr 26.
The mutual compatibility of Hamaker constants, solubility parameters or cohesive energy densities (CED) and surface/interface tensions are evaluated. It is shown that the partial contributions (dispersive, Lifshitz-van der Waals, dipolar induction, dipolar orientation, polar, acid, base and hydrogen bond) to Hamaker constants, solubility parameters or cohesive energy densities and surface/interface tensions are mutually inconsistent. The published reference data for a single set of liquids is moreover shown to be exceedingly scattered; making the parallel use of these scales challenging. Reference processes designed for bringing two and three phases into mutual contact are conflicting. The two-phase processes within Hamaker and exchange energy density (EED) frameworks agree, but the three-phase models differ. As a free-standing parameter the EED is however comparable. The two-phase adhesion process is shown to be incompatible with the other contact processes and the three-phase adhesion process is opposite to them. One reason for this controversy is the different averaging of interfacial properties. While interfacial Hamaker constants and solubility parameters or cohesive energy densities are geometric averages of corresponding intervening phase properties, this practice is replaced by the work of adhesion being geometrically averaged as works of cohesion. As a result, there exist three conflicting models for the adhesion process: the Dupré work of adhesion, the Girifalco-Good geometric averaged works of cohesion and Fowkes reduced interfacial or interphasial tension process. None of these agree with the commonly accepted standard Hamaker contact processes and they should be replaced with the compatible extended work of adhesion process originally suggested by Dupré. The models offered for the conversion of Hamaker constants and solubility parameters or cohesive energy densities to surface tensions involve conversion factors and equilibrium distances between planes of molecules in liquids. The equilibrium distance for different close packings derived from molar liquid volumes are about 2-5 times larger than the cutoff distances obtained from simulations. Using volumetric equilibrium distances, the conversion factors for dispersive, polar and total Hamaker constant and solubility parameter or cohesive energy densities to surface tensions become nearly equal but they are different for each liquid.
评估了哈马克常数、溶解度参数或内聚能密度(CED)以及表面/界面张力之间的相互兼容性。结果表明,哈马克常数、溶解度参数或内聚能密度以及表面/界面张力的部分贡献(分散力、Lifshitz-van der Waals 力、偶极力、偶极定向力、极性力、酸、碱和氢键)相互不一致。此外,还表明对于一组单一液体的已发表参考数据极为分散,这使得这些标度的平行使用具有挑战性。设计用于使两相和三相相互接触的参考过程相互冲突。在哈马克和交换能密度(EED)框架内的两相过程是一致的,但三相模型不同。作为一个独立的参数,EED 是可比的。两相附着过程与其他接触过程不兼容,三相附着过程与它们相反。造成这种争议的一个原因是界面性质的不同平均。虽然界面哈马克常数和溶解度参数或内聚能密度是相应相间性质的几何平均值,但这种做法被作为内聚功的附着力的几何平均值所取代。因此,存在三种相互冲突的附着过程模型:杜普雷附着力、吉里法尔科-古德几何平均内聚功和福克思降低的界面或相间张力过程。这些都与普遍接受的标准哈马克接触过程不一致,应将其替换为杜普雷最初提出的兼容扩展附着力过程。转换哈马克常数和溶解度参数或内聚能密度为表面张力的模型涉及转换因子和液体中分子平面之间的平衡距离。从摩尔液体体积导出的不同密堆积的平衡距离大约比模拟得到的截止距离大 2-5 倍。使用体积平衡距离,分散力、极性和总哈马克常数以及溶解度参数或内聚能密度到表面张力的转换因子变得几乎相等,但对于每种液体它们是不同的。