Scheil Katharina, Gopakumar Thiruvancheril G, Bahrenburg Julia, Temps Friedrich, Maurer Reinhard Johann, Reuter Karsten, Berndt Richard
Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität , 24098 Kiel, Germany.
Department of Chemistry, Indian Institute of Technology Kanpur , Kanpur 208016, India.
J Phys Chem Lett. 2016 Jun 2;7(11):2080-4. doi: 10.1021/acs.jpclett.6b01011. Epub 2016 May 20.
The trans-cis isomerization makes azobenzene (AB) a robust molecular switch. Once adsorbed to a metal, however, the switching is inefficient or absent due to rapid excited-state quenching or loss of the trans-cis bistability. We find that tris-[4-(phenylazo)-phenyl]-amine is a rather efficient switch on Ag(111). Using scanning tunneling and atomic force microscopy at submolecular resolution along with density functional theory calculations, we show that the switching process is no trans-cis isomerization but rather a reorientation of the N-N bond of an AB unit. It proceeds through a twisting motion of the azo-bridge that leads to a lateral shift of a phenyl ring. Thus, the role of the Ag substrate is ambivalent. While it suppresses the original bistability of the azobenzene units, it creates a new one by inducing a barrier for the rotation of the N-N bond.
反式-顺式异构化使偶氮苯(AB)成为一种强大的分子开关。然而,一旦吸附到金属上,由于快速的激发态猝灭或反式-顺式双稳态的丧失,开关效率低下或不存在。我们发现三-[4-(苯基偶氮)-苯基]-胺在Ag(111)上是一种相当有效的开关。通过在亚分子分辨率下使用扫描隧道显微镜和原子力显微镜以及密度泛函理论计算,我们表明开关过程不是反式-顺式异构化,而是AB单元的N-N键的重新取向。它通过偶氮桥的扭转运动进行,这导致苯环的横向移动。因此,Ag衬底的作用是矛盾的。虽然它抑制了偶氮苯单元原来的双稳态,但它通过诱导N-N键旋转的势垒创造了一种新的双稳态。