Chen Tsung-Wei, Hsiao Chin-Lun, Hu Chong-Der
Department of Physics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.
J Phys Condens Matter. 2016 Jul 13;28(27):275801. doi: 10.1088/0953-8984/28/27/275801. Epub 2016 May 19.
We investigate the change in the non-zero Chern number and out-of-plane spin polarization of the edge currents in a honeycomb lattice with the Haldane-Rashba interaction. This interaction breaks the time-reversal symmetry due to the Haldane phase caused by a current loop at the site-I and site-II atoms, and also accounts for the Rashba-type spin-orbit interaction. The Rashba spin-orbit interaction increases the number of Dirac points and the band-touching phenomenon can be generated by tuning the on-site potential in the non-zero Haldane phase. By using the Pontryagin winding number and numerical Berry curvature methods, we find that the Chern number pattern is {+2, -1, 0} and {-2, +1, 0} for the positive and negative Haldane phase, respectively. A non-zero Chern number is called a Chern-insulating phase. We discovered that changes in both the Haldane phase and on-site potential leads to a change in the orientation of the bulk spin polarization of site-I and site-II atoms. Interestingly, in a ribbon with a zigzag edge, which naturally has site-I atoms at one outer edge and site-II atoms at the opposite outer edge, the spin polarization of the edge states approximately obeys the properties of bulk spin polarization regardless of the change in the Chern number. In addition, even when the Chern number changes from +2 to -1 (or -2 to +1), by tuning the strength of the on-site potential, the sign of the spin polarization of the edge states persists. This approximate bulk-edge correspondence of the spin polarization in the Haldane-Rashba system would play an important role in spintronics, because it enables us to control the orientation of the spin polarization in a single Chern-insulating phase.
我们研究了具有霍尔丹- Rashba相互作用的蜂窝晶格中边缘电流的非零陈数和面外自旋极化的变化。由于位于I位点和II位点原子处的电流环引起的霍尔丹相,这种相互作用打破了时间反演对称性,并且还考虑了Rashba型自旋轨道相互作用。Rashba自旋轨道相互作用增加了狄拉克点的数量,并且通过在非零霍尔丹相中调节在位势可以产生能带接触现象。通过使用庞特里亚金绕数和数值贝里曲率方法,我们发现对于正霍尔丹相和负霍尔丹相,陈数模式分别为{+2, -1, 0}和{-2, +1, 0}。非零陈数被称为陈绝缘相。我们发现霍尔丹相和在位势的变化都会导致I位点和II位点原子的体自旋极化方向发生变化。有趣的是,在具有锯齿形边缘的带状结构中,其在一个外边缘自然地具有I位点原子,在相对的外边缘具有II位点原子,边缘态的自旋极化大致遵循体自旋极化的性质,而与陈数的变化无关。此外,即使当陈数从 +2 变为 -1(或从 -2 变为 +1)时,通过调节在位势的强度,边缘态自旋极化的符号仍然保持不变。霍尔丹- Rashba系统中自旋极化的这种近似体-边对应关系在自旋电子学中将发挥重要作用,因为它使我们能够在单个陈绝缘相中控制自旋极化的方向。