Suppr超能文献

一种用于按需局部 pH 控制的电化学平台。

An electrochemical platform for localized pH control on demand.

机构信息

Robert Bosch LLC. Bosch Research & Technology Center, 4005 Miranda Ave, Palo Alto, CA 94304, USA.

出版信息

Lab Chip. 2016 Jun 21;16(12):2236-44. doi: 10.1039/c6lc00421k. Epub 2016 May 20.

Abstract

Solution pH is a powerful tool for regulating many kinds of chemical activity, but is generally treated as a static property defined by a pre-selected buffer. Introducing dynamic control of pH in space, time, and magnitude can enable richer and more efficient chemistries, but is not feasible with traditional methods of titration or buffer exchange. Recent reports have featured electrochemical strategies for modifying bulk pH in constrained volumes, but only demonstrate switching between two preset values and omit spatial control entirely. Here, we use a combination of solution-borne quinones and galvanostatic excitation to enable quantitative control of pH environments that are highly localized to an electrode surface. We demonstrate highly reproducible acidification and alkalinization with up to 0.1 pH s(-1) (±0.002 pH s(-1)) rate of change across the dynamic range of our pH sensor (pH 4.5 to 7.5) in buffered solutions. Using dynamic current control, we generate and sustain 3 distinct pH microenvironments simultaneously to within ±0.04 pH for 13 minutes in a single solution, and we leverage these microenvironments to demonstrate spatially-resolved, pH-driven control of enzymatic activity. In addition to straightforward applications of spatio-temporal pH control (e.g. efficiently studying pH-dependencies of chemical interactions), the technique opens completely new avenues for implementing complex systems through dynamic control of enzyme activation, protein binding affinity, chemical reactivity, chemical release, molecular self-assembly, and many more pH-controlled processes.

摘要

溶液 pH 值是调节多种化学活性的有力工具,但通常被视为由预先选择的缓冲液定义的静态性质。在空间、时间和幅度上引入 pH 值的动态控制,可以实现更丰富、更高效的化学,但传统的滴定或缓冲交换方法是不可行的。最近的报告介绍了用于在约束体积中修改体相 pH 值的电化学策略,但仅展示了在两个预设值之间的切换,完全省略了空间控制。在这里,我们使用溶液中醌和恒电流激发的组合,实现了对电极表面高度局部化的 pH 环境的定量控制。我们在缓冲溶液中证明了高达 0.1 pH s(-1)(±0.002 pH s(-1))的变化率的高度重现性的酸化和碱化,跨越我们 pH 传感器的动态范围(pH 4.5 至 7.5)。通过动态电流控制,我们在单个溶液中同时生成和维持 3 个不同的 pH 微环境,在 13 分钟内保持在 ±0.04 pH 以内,我们利用这些微环境来展示空间分辨的、由 pH 驱动的酶活性控制。除了时空 pH 控制的直接应用(例如,高效研究化学相互作用的 pH 依赖性)之外,该技术还通过酶激活、蛋白质结合亲和力、化学反应性、化学释放、分子自组装等 pH 控制过程的动态控制,为实现复杂系统开辟了全新的途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验