Department of Radiation Oncology, Saarland University, Homburg, Saarland, Germany.
Clin Cancer Res. 2016 Nov 1;22(21):5300-5311. doi: 10.1158/1078-0432.CCR-15-3081. Epub 2016 May 19.
Intensity-modulated radiotherapy (IMRT) enables the delivery of high doses to target volume while sparing surrounding nontargeted tissues. IMRT treatment, however, substantially increases the normal tissue volume receiving low-dose irradiation, but the biologic consequences are unclear.
Using mouse strains that varied in genetic DNA repair capacity, we investigated the DNA damage response of cortical neurons during daily low-dose irradiation (0.1 Gy). Using light and electron microscopic approaches, we enumerated and characterized DNA damage foci as marker for double-strand breaks (DSBs).
During repeated low-dose irradiation, cortical neurons in brain tissues of all mouse strains had a significant increase of persisting foci with cumulative doses, with the most pronounced accumulation of large-sized foci in repair-deficient mice. Electron microscopic analysis revealed that persisting foci in repair-proficient neurons reflect chromatin alterations in heterochromatin, but not persistently unrepaired DSBs. Repair-deficient SCID neurons, by contrast, showed high numbers of unrepaired DSBs in eu- and heterochromatin, emphasizing the fundamental role of DNA-PKcs in DSB rejoining, independent of chromatin status. In repair-deficient ATM neurons, large persisting damage foci reflect multiple unrepaired DSBs concentrated at the boundary of heterochromatin due to disturbed KAP1 phosphorylation.
Repeated low-dose irradiation leads to the accumulation of persisting DNA damage foci in cortical neurons and thus may adversely affect brain tissue and increase the risk of carcinogenesis. Multiple unrepaired DSBs account for large-sized foci in repair-deficient neurons, thus quantifying foci alone may underestimate extent and complexity of persistent DNA damage. Clin Cancer Res; 22(21); 5300-11. ©2016 AACR.
调强放疗(IMRT)能够在向靶区递送高剂量的同时保护周围非靶向组织。然而,IMRT 治疗大大增加了接受低剂量照射的正常组织体积,但生物学后果尚不清楚。
利用遗传 DNA 修复能力不同的小鼠品系,我们研究了皮质神经元在每日低剂量照射(0.1Gy)过程中的 DNA 损伤反应。我们使用光镜和电镜方法,计数并描述了作为双链断裂(DSB)标志物的 DNA 损伤焦点。
在重复低剂量照射过程中,所有小鼠品系的脑组织皮质神经元的持续焦点数量随累积剂量显著增加,在修复缺陷型小鼠中,大尺寸焦点的积累最为明显。电镜分析显示,修复能力正常的神经元中的持续焦点反映了异染色质中的染色质改变,但不是持续未修复的 DSB。相比之下,修复缺陷型 SCID 神经元在常染色质和异染色质中均显示出大量未修复的 DSB,强调了 DNA-PKcs 在 DSB 重接中的基本作用,而与染色质状态无关。在修复缺陷型 ATM 神经元中,大的持续损伤焦点反映了由于 KAP1 磷酸化紊乱而集中在异染色质边界处的多个未修复的 DSB。
重复低剂量照射会导致皮质神经元中持续 DNA 损伤焦点的积累,从而可能对脑组织产生不利影响,增加致癌风险。多个未修复的 DSB 导致修复缺陷型神经元中大尺寸焦点的形成,因此仅定量焦点可能会低估持续 DNA 损伤的程度和复杂性。临床癌症研究;22(21);5300-11。©2016AACR。