Suppr超能文献

细丝蛋白C是一种与肌原纤维微损伤快速修复相关的高度动态蛋白。

Filamin C is a highly dynamic protein associated with fast repair of myofibrillar microdamage.

作者信息

Leber Yvonne, Ruparelia Avnika A, Kirfel Gregor, van der Ven Peter F M, Hoffmann Bernd, Merkel Rudolf, Bryson-Richardson Robert J, Fürst Dieter O

机构信息

Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, D53121 Bonn, Germany.

School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia.

出版信息

Hum Mol Genet. 2016 Jul 1;25(13):2776-2788. doi: 10.1093/hmg/ddw135. Epub 2016 May 19.

Abstract

Filamin c (FLNc) is a large dimeric actin-binding protein located at premyofibrils, myofibrillar Z-discs and myofibrillar attachment sites of striated muscle cells, where it is involved in mechanical stabilization, mechanosensation and intracellular signaling. Mutations in the gene encoding FLNc give rise to skeletal muscle diseases and cardiomyopathies. Here, we demonstrate by fluorescence recovery after photobleaching that a large fraction of FLNc is highly mobile in cultured neonatal mouse cardiomyocytes and in cardiac and skeletal muscles of live transgenic zebrafish embryos. Analysis of cardiomyocytes from Xirp1 and Xirp2 deficient animals indicates that both Xin actin-binding repeat-containing proteins stabilize FLNc selectively in premyofibrils. Using a novel assay to analyze myofibrillar microdamage and subsequent repair in cultured contracting cardiomyocytes by live cell imaging, we demonstrate that repair of damaged myofibrils is achieved within only 4 h, even in the absence of de novo protein synthesis. FLNc is immediately recruited to these sarcomeric lesions together with its binding partner aciculin and precedes detectable assembly of filamentous actin and recruitment of other myofibrillar proteins. These data disclose an unprecedented degree of flexibility of the almost crystalline contractile machinery and imply FLNc as a dynamic signaling hub, rather than a primarily structural protein. Our myofibrillar damage/repair model illustrates how (cardio)myocytes are kept functional in their mechanically and metabolically strained environment. Our results help to better understand the pathomechanisms and pathophysiology of early stages of FLNc-related myofibrillar myopathy and skeletal and cardiac diseases preceding pathological protein aggregation.

摘要

细丝蛋白c(FLNc)是一种大型二聚体肌动蛋白结合蛋白,位于横纹肌细胞的前肌原纤维、肌原纤维Z盘和肌原纤维附着位点,在那里它参与机械稳定、机械传感和细胞内信号传导。编码FLNc的基因突变会导致骨骼肌疾病和心肌病。在这里,我们通过光漂白后的荧光恢复证明,在培养的新生小鼠心肌细胞以及活体转基因斑马鱼胚胎的心脏和骨骼肌中,很大一部分FLNc具有高度的流动性。对Xirp1和Xirp2缺陷动物的心肌细胞分析表明,这两种含Xin肌动蛋白结合重复序列的蛋白都能在肌原纤维前选择性地稳定FLNc。通过活细胞成像,我们使用一种新颖的检测方法来分析培养的收缩心肌细胞中的肌原纤维微损伤及随后的修复情况,结果表明,即使在没有从头合成蛋白质的情况下,受损肌原纤维的修复也能在仅4小时内完成。FLNc与其结合伴侣aciculin一起立即被招募到这些肌节损伤处,并先于丝状肌动蛋白的可检测组装以及其他肌原纤维蛋白的招募。这些数据揭示了几乎晶体状收缩机制前所未有的灵活性,并暗示FLNc是一个动态信号枢纽,而不是主要的结构蛋白。我们的肌原纤维损伤/修复模型说明了(心脏)肌细胞在其机械和代谢紧张的环境中是如何保持功能的。我们的结果有助于更好地理解FLNc相关肌原纤维肌病早期阶段以及病理性蛋白质聚集之前的骨骼肌和心脏疾病的发病机制和病理生理学。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验