Hashimoto Keiji, Zaitseva Irina N, Bonala Radha, Attaluri Sivaprasad, Ozga Katherine, Iden Charles R, Johnson Francis, Moriya Masaaki, Grollman Arthur P, Sidorenko Viktoriya S
Department of Pharmacological Sciences.
Department of Chemistry and.
Carcinogenesis. 2016 Jul;37(7):647-655. doi: 10.1093/carcin/bgw045. Epub 2016 Apr 18.
Aristolochic acids (AA) are implicated in the development of chronic renal disease and upper urinary tract carcinoma in humans. Using in vitro approaches, we demonstrated that N-hydroxyaristolactams, metabolites derived from partial nitroreduction of AA, require sulfotransferase (SULT)-catalyzed conjugation with a sulfonyl group to form aristolactam-DNA adducts. Following up on this observation, bioactivation of AA-I and N-hydroxyaristolactam I (AL-I-NOH) was studied in human kidney (HK-2) and skin fibroblast (GM00637) cell lines. Pentachlorophenol, a known SULT inhibitor, significantly reduced cell death and aristolactam-DNA adduct levels in HK-2 cells following exposure to AA-I and AL-I-NOH, suggesting a role for Phase II metabolism in AA activation. A gene knockdown, siRNA approach was employed to establish the involvement of selected SULTs and nitroreductases in AA-I bioactivation. Silencing of SULT1A1 and PAPSS2 led to a significant decrease in aristolactam-DNA levels in both cell lines following exposure to AA-I, indicating the critical role for sulfonation in the activation of AA-I in vivo Since HK-2 cells proved relatively resistant to knockdown with siRNAs, gene silencing of xanthine oxidoreductase, cytochrome P450 oxidoreductase and NADPH:quinone oxidoreductase was conducted in GM00637 cells, showing a significant increase, decrease and no effect on aristolactam-DNA levels, respectively. In GM00637 cells exposed to AL-I-NOH, suppressing the SULT pathway led to a significant decrease in aristolactam-DNA formation, mirroring data obtained for AA-I. We conclude from these studies that SULT1A1 is involved in the bioactivation of AA-I through the sulfonation of AL-I-NOH, contributing significantly to the toxicities of AA observed in vivo.
马兜铃酸(AA)与人类慢性肾病和上尿路癌的发生有关。我们采用体外实验方法证明,N - 羟基马兜铃内酰胺是AA部分硝基还原产生的代谢产物,需要磺基转移酶(SULT)催化与磺酰基结合才能形成马兜铃内酰胺 - DNA加合物。基于这一观察结果,我们在人肾(HK - 2)和皮肤成纤维细胞(GM00637)细胞系中研究了AA - I和N - 羟基马兜铃内酰胺I(AL - I - NOH)的生物活化作用。五氯苯酚是一种已知的SULT抑制剂,在HK - 2细胞暴露于AA - I和AL - I - NOH后,它能显著降低细胞死亡和马兜铃内酰胺 - DNA加合物水平,这表明II相代谢在AA活化过程中发挥作用。我们采用基因敲除的小干扰RNA(siRNA)方法来确定特定的SULT和硝基还原酶在AA - I生物活化中的作用。在暴露于AA - I后,HK - 2和GM00637两种细胞系中SULT1A1和PAPSS2基因沉默均导致马兜铃内酰胺 - DNA水平显著降低,这表明磺化作用在体内AA - I活化过程中起关键作用。由于HK - 2细胞对siRNA介导的基因敲除具有相对抗性,因此我们在GM00637细胞中对黄嘌呤氧化还原酶、细胞色素P450氧化还原酶和NADPH:醌氧化还原酶进行了基因沉默实验,结果显示它们分别对马兜铃内酰胺 - DNA水平有显著升高、降低和无影响。在暴露于AL - I - NOH的GM00637细胞中,抑制SULT途径导致马兜铃内酰胺 - DNA形成显著减少,这与AA - I实验结果一致。我们从这些研究中得出结论,SULT1A1通过对AL - I - NOH进行磺化作用参与AA - I的生物活化,这对体内观察到的AA毒性有显著影响。