Suppr超能文献

人细胞中硫酸转移酶-1A1介导的马兜铃酸I和N-羟基马兜铃内酰胺I的生物活化作用

Sulfotransferase-1A1-dependent bioactivation of aristolochic acid I and N-hydroxyaristolactam I in human cells.

作者信息

Hashimoto Keiji, Zaitseva Irina N, Bonala Radha, Attaluri Sivaprasad, Ozga Katherine, Iden Charles R, Johnson Francis, Moriya Masaaki, Grollman Arthur P, Sidorenko Viktoriya S

机构信息

Department of Pharmacological Sciences.

Department of Chemistry and.

出版信息

Carcinogenesis. 2016 Jul;37(7):647-655. doi: 10.1093/carcin/bgw045. Epub 2016 Apr 18.

Abstract

Aristolochic acids (AA) are implicated in the development of chronic renal disease and upper urinary tract carcinoma in humans. Using in vitro approaches, we demonstrated that N-hydroxyaristolactams, metabolites derived from partial nitroreduction of AA, require sulfotransferase (SULT)-catalyzed conjugation with a sulfonyl group to form aristolactam-DNA adducts. Following up on this observation, bioactivation of AA-I and N-hydroxyaristolactam I (AL-I-NOH) was studied in human kidney (HK-2) and skin fibroblast (GM00637) cell lines. Pentachlorophenol, a known SULT inhibitor, significantly reduced cell death and aristolactam-DNA adduct levels in HK-2 cells following exposure to AA-I and AL-I-NOH, suggesting a role for Phase II metabolism in AA activation. A gene knockdown, siRNA approach was employed to establish the involvement of selected SULTs and nitroreductases in AA-I bioactivation. Silencing of SULT1A1 and PAPSS2 led to a significant decrease in aristolactam-DNA levels in both cell lines following exposure to AA-I, indicating the critical role for sulfonation in the activation of AA-I in vivo Since HK-2 cells proved relatively resistant to knockdown with siRNAs, gene silencing of xanthine oxidoreductase, cytochrome P450 oxidoreductase and NADPH:quinone oxidoreductase was conducted in GM00637 cells, showing a significant increase, decrease and no effect on aristolactam-DNA levels, respectively. In GM00637 cells exposed to AL-I-NOH, suppressing the SULT pathway led to a significant decrease in aristolactam-DNA formation, mirroring data obtained for AA-I. We conclude from these studies that SULT1A1 is involved in the bioactivation of AA-I through the sulfonation of AL-I-NOH, contributing significantly to the toxicities of AA observed in vivo.

摘要

马兜铃酸(AA)与人类慢性肾病和上尿路癌的发生有关。我们采用体外实验方法证明,N - 羟基马兜铃内酰胺是AA部分硝基还原产生的代谢产物,需要磺基转移酶(SULT)催化与磺酰基结合才能形成马兜铃内酰胺 - DNA加合物。基于这一观察结果,我们在人肾(HK - 2)和皮肤成纤维细胞(GM00637)细胞系中研究了AA - I和N - 羟基马兜铃内酰胺I(AL - I - NOH)的生物活化作用。五氯苯酚是一种已知的SULT抑制剂,在HK - 2细胞暴露于AA - I和AL - I - NOH后,它能显著降低细胞死亡和马兜铃内酰胺 - DNA加合物水平,这表明II相代谢在AA活化过程中发挥作用。我们采用基因敲除的小干扰RNA(siRNA)方法来确定特定的SULT和硝基还原酶在AA - I生物活化中的作用。在暴露于AA - I后,HK - 2和GM00637两种细胞系中SULT1A1和PAPSS2基因沉默均导致马兜铃内酰胺 - DNA水平显著降低,这表明磺化作用在体内AA - I活化过程中起关键作用。由于HK - 2细胞对siRNA介导的基因敲除具有相对抗性,因此我们在GM00637细胞中对黄嘌呤氧化还原酶、细胞色素P450氧化还原酶和NADPH:醌氧化还原酶进行了基因沉默实验,结果显示它们分别对马兜铃内酰胺 - DNA水平有显著升高、降低和无影响。在暴露于AL - I - NOH的GM00637细胞中,抑制SULT途径导致马兜铃内酰胺 - DNA形成显著减少,这与AA - I实验结果一致。我们从这些研究中得出结论,SULT1A1通过对AL - I - NOH进行磺化作用参与AA - I的生物活化,这对体内观察到的AA毒性有显著影响。

相似文献

1
Sulfotransferase-1A1-dependent bioactivation of aristolochic acid I and N-hydroxyaristolactam I in human cells.
Carcinogenesis. 2016 Jul;37(7):647-655. doi: 10.1093/carcin/bgw045. Epub 2016 Apr 18.
2
Bioactivation mechanisms of N-hydroxyaristolactams: Nitroreduction metabolites of aristolochic acids.
Environ Mol Mutagen. 2019 Dec;60(9):792-806. doi: 10.1002/em.22321. Epub 2019 Aug 16.
3
Bioactivation of the human carcinogen aristolochic acid.
Carcinogenesis. 2014 Aug;35(8):1814-22. doi: 10.1093/carcin/bgu095. Epub 2014 Apr 17.
5
Impact of genetic modulation of SULT1A enzymes on DNA adduct formation by aristolochic acids and 3-nitrobenzanthrone.
Arch Toxicol. 2017 Apr;91(4):1957-1975. doi: 10.1007/s00204-016-1808-6. Epub 2016 Aug 24.

引用本文的文献

1
SGLT2 inhibitor dapagliflozin protects the kidney in a murine model of Balkan nephropathy.
Am J Physiol Renal Physiol. 2024 Feb 1;326(2):F227-F240. doi: 10.1152/ajprenal.00228.2023. Epub 2023 Nov 30.
2
Nitroreduction: A Critical Metabolic Pathway for Drugs, Environmental Pollutants, and Explosives.
Chem Res Toxicol. 2022 Oct 17;35(10):1747-1765. doi: 10.1021/acs.chemrestox.2c00175. Epub 2022 Aug 31.
3
Aristolochic acid-associated cancers: a public health risk in need of global action.
Nat Rev Cancer. 2022 Oct;22(10):576-591. doi: 10.1038/s41568-022-00494-x. Epub 2022 Jul 19.
4
Additive Effects of Arsenic and Aristolochic Acid in Chemical Carcinogenesis of Upper Urinary Tract Urothelium.
Cancer Epidemiol Biomarkers Prev. 2021 Feb;30(2):317-325. doi: 10.1158/1055-9965.EPI-20-1090. Epub 2020 Dec 4.
5
6
Bioactivation mechanisms of N-hydroxyaristolactams: Nitroreduction metabolites of aristolochic acids.
Environ Mol Mutagen. 2019 Dec;60(9):792-806. doi: 10.1002/em.22321. Epub 2019 Aug 16.
7
Systematic Overview of Aristolochic Acids: Nephrotoxicity, Carcinogenicity, and Underlying Mechanisms.
Front Pharmacol. 2019 Jun 11;10:648. doi: 10.3389/fphar.2019.00648. eCollection 2019.
8
Human liver-kidney model elucidates the mechanisms of aristolochic acid nephrotoxicity.
JCI Insight. 2017 Nov 16;2(22). doi: 10.1172/jci.insight.95978.
10
Balkan endemic nephropathy: an update on its aetiology.
Arch Toxicol. 2016 Nov;90(11):2595-2615. doi: 10.1007/s00204-016-1819-3. Epub 2016 Aug 19.

本文引用的文献

1
Variation in genomic landscape of clear cell renal cell carcinoma across Europe.
Nat Commun. 2014 Oct 29;5:5135. doi: 10.1038/ncomms6135.
2
Total synthesis of the aristolochic acids, their major metabolites, and related compounds.
Chem Res Toxicol. 2014 Jul 21;27(7):1236-42. doi: 10.1021/tx500122x. Epub 2014 Jun 11.
3
Bioactivation of the human carcinogen aristolochic acid.
Carcinogenesis. 2014 Aug;35(8):1814-22. doi: 10.1093/carcin/bgu095. Epub 2014 Apr 17.
4
The influence of dicoumarol on the bioactivation of the carcinogen aristolochic acid I in rats.
Mutagenesis. 2014 May;29(3):189-200. doi: 10.1093/mutage/geu004. Epub 2014 Mar 5.
5
Cd²⁺-induced alteration of the global proteome of human skin fibroblast cells.
J Proteome Res. 2014 Mar 7;13(3):1677-87. doi: 10.1021/pr401159f. Epub 2014 Feb 21.
6
Quantification of aristolochic acids I and II in herbal dietary supplements by ultra-high-performance liquid chromatography-multistage fragmentation mass spectrometry.
Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2014;31(5):784-91. doi: 10.1080/19440049.2014.892215. Epub 2014 Apr 8.
7
Mutational signature of aristolochic acid exposure as revealed by whole-exome sequencing.
Sci Transl Med. 2013 Aug 7;5(197):197ra102. doi: 10.1126/scitranslmed.3006200.
8
Genome-wide mutational signatures of aristolochic acid and its application as a screening tool.
Sci Transl Med. 2013 Aug 7;5(197):197ra101. doi: 10.1126/scitranslmed.3006086.
10
Cancer genome landscapes.
Science. 2013 Mar 29;339(6127):1546-58. doi: 10.1126/science.1235122.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验