Anashkin Viktor A, Salminen Anu, Vorobjeva Natalia N, Lahti Reijo, Baykov Alexander A
Department of Biochemistry, University of Turku, FIN-20014 Turku, Finland Belozersky Institute of Physico-Chemical Biology and Department of Chemistry, Lomonosov Moscow State University, Moscow 119899, Russia.
Department of Biochemistry, University of Turku, FIN-20014 Turku, Finland.
Biochem J. 2016 Jul 15;473(14):2097-107. doi: 10.1042/BCJ20160293. Epub 2016 May 17.
Many prokaryotic soluble PPases (pyrophosphatases) contain a pair of regulatory adenine nucleotide-binding CBS (cystathionine β-synthase) domains that act as 'internal inhibitors' whose effect is modulated by nucleotide binding. Although such regulatory domains are found in important enzymes and transporters, the underlying regulatory mechanism has only begun to come into focus. We reported previously that CBS domains bind nucleotides co-operatively and induce positive kinetic co-operativity (non-Michaelian behaviour) in CBS-PPases (CBS domain-containing PPases). In the present study, we demonstrate that a homodimeric ehPPase (Ethanoligenens harbinense PPase) containing an inherent mutation in an otherwise conserved asparagine residue in a loop near the active site exhibits non-co-operative hydrolysis kinetics. A similar N312S substitution in 'co-operative' dhPPase (Desulfitobacterium hafniense PPase) abolished kinetic co-operativity while causing only minor effects on nucleotide-binding affinity and co-operativity. However, the substitution reversed the effect of diadenosine tetraphosphate, abolishing kinetic co-operativity in wild-type dhPPase, but restoring it in the variant dhPPase. A reverse serine-to-asparagine replacement restored kinetic co-operativity in ehPPase. Molecular dynamics simulations revealed that the asparagine substitution resulted in a change in the hydrogen-bonding pattern around the asparagine residue and the subunit interface, allowing greater flexibility at the subunit interface without a marked effect on the overall structure. These findings identify this asparagine residue as lying at the 'crossroads' of information paths connecting catalytic and regulatory domains within a subunit and catalytic sites between subunits.
许多原核可溶性焦磷酸酶含有一对作为“内部抑制剂”的调节性腺嘌呤核苷酸结合CBS(胱硫醚β-合酶)结构域,其作用受核苷酸结合的调节。尽管在重要的酶和转运蛋白中发现了此类调节结构域,但其潜在的调节机制才刚刚开始受到关注。我们之前报道过,CBS结构域协同结合核苷酸,并在含CBS结构域的焦磷酸酶(CBS-PPases)中诱导正动力学协同性(非米氏行为)。在本研究中,我们证明,一种同源二聚体嗜盐碱地芽孢杆菌焦磷酸酶(Ethanoligenens harbinense PPase)在活性位点附近的环中一个原本保守的天冬酰胺残基处存在固有突变,表现出非协同水解动力学。在“协同性”的嗜热栖热放线菌焦磷酸酶(Desulfitobacterium hafniense PPase)中进行类似的N312S替换消除了动力学协同性,同时仅对核苷酸结合亲和力和协同性产生轻微影响。然而,该替换逆转了四磷酸二腺苷的作用,消除了野生型嗜热栖热放线菌焦磷酸酶中的动力学协同性,但在变体嗜热栖热放线菌焦磷酸酶中恢复了该协同性。将丝氨酸反向替换成天冬酰胺恢复了嗜盐碱地芽孢杆菌焦磷酸酶中的动力学协同性。分子动力学模拟表明,天冬酰胺替换导致天冬酰胺残基周围和亚基界面处的氢键模式发生变化,使亚基界面具有更大的灵活性,而对整体结构没有显著影响。这些发现表明,这个天冬酰胺残基位于连接亚基内催化和调节结构域以及亚基间催化位点的信息路径的“交叉点”。