Suppr超能文献

让底物流动,而非酶:将D-氨基酸氧化酶实际固定于玻璃微反应器中以实现有效的生物催化转化

Let the substrate flow, not the enzyme: Practical immobilization of d-amino acid oxidase in a glass microreactor for effective biocatalytic conversions.

作者信息

Bolivar Juan M, Tribulato Marco A, Petrasek Zdenek, Nidetzky Bernd

机构信息

Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, Graz, A-8010, Austria.

Austrian Centre of Industrial Biotechnology (ACIB), Graz, Austria.

出版信息

Biotechnol Bioeng. 2016 Nov;113(11):2342-9. doi: 10.1002/bit.26011. Epub 2016 Jun 9.

Abstract

Exploiting enzymes for chemical synthesis in flow microreactors necessitates their reuse for multiple rounds of conversion. To achieve this goal, immobilizing the enzymes on microchannel walls is a promising approach, but practical methods for it are lacking. Using fusion to a silica-binding module to engineer enzyme adsorption to glass surfaces, we show convenient immobilization of d-amino acid oxidase on borosilicate microchannel plates. In confocal laser scanning microscopy, channel walls appeared uniformly coated with target protein. The immobilized enzyme activity was in the range expected for monolayer coverage of the plain surface with oxidase (2.37 × 10(-5)  nmol/mm(2) ). Surface attachment of the enzyme was completely stable under flow. The operational half-life of the immobilized oxidase (25°C, pH 8.0; soluble catalase added) was 40 h. Enzymatic oxidation of d-Met into α-keto-γ-(methylthio)butyric acid was characterized in single-pass and recycle reactor configurations, employing in-line measurement of dissolved O2 , and off-line determination of the keto-acid product. Reaction-diffusion time-scale analysis for different flow conditions showed that the heterogeneously catalyzed reaction was always slower than diffusion of O2 to the solid surface (DaII  ≤ 0.3). Potential of the microreactor for intensifying O2 -dependent biotransformations restricted by mass transfer in conventional reactors is thus revealed. Biotechnol. Bioeng. 2016;113: 2342-2349. © 2016 Wiley Periodicals, Inc.

摘要

在流动微反应器中利用酶进行化学合成需要将其多次重复用于多轮转化反应。为实现这一目标,将酶固定在微通道壁上是一种很有前景的方法,但目前仍缺乏实用的方法。通过与硅结合模块融合来设计酶对玻璃表面的吸附,我们展示了将d -氨基酸氧化酶方便地固定在硼硅酸盐微通道板上的方法。在共聚焦激光扫描显微镜下,通道壁上似乎均匀地覆盖着目标蛋白。固定化酶的活性处于氧化酶单层覆盖平面表面预期的范围内(2.37×10⁻⁵ nmol/mm²)。酶在表面的附着在流动状态下完全稳定。固定化氧化酶的操作半衰期(25°C,pH 8.0;添加可溶性过氧化氢酶)为40小时。在单程和循环反应器配置中对d -蛋氨酸酶促氧化生成α -酮基 -γ -(甲硫基)丁酸进行了表征,采用在线测量溶解氧和离线测定酮酸产物的方法。对不同流动条件的反应 - 扩散时间尺度分析表明,非均相催化反应总是比氧气扩散到固体表面的速度慢(DaII≤0.3)。由此揭示了微反应器在强化传统反应器中受传质限制的依赖氧气的生物转化方面的潜力。生物技术与生物工程。2016年;113:2342 - 2349。©2016威利期刊公司。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验