Suppr超能文献

特殊幺正操作之间局部区分的最少运行次数及序列方案

Minimal number of runs and the sequential scheme for local discrimination between special unitary operations.

作者信息

Cao Tian-Qing, Yang Ying-Hui, Zhang Zhi-Chao, Tian Guo-Jing, Gao Fei, Wen Qiao-Yan

机构信息

State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, 100876, China.

School of Mathematics and Information Science, Henan Polytechnic University, Jiaozuo, 454000, China.

出版信息

Sci Rep. 2016 May 25;6:26696. doi: 10.1038/srep26696.

Abstract

It has been shown that any two different multipartite unitary operations are perfectly distinguishable by local operations and classical communication with a finite number of runs. Meanwhile, two open questions were left. One is how to determine the minimal number of runs needed for the local discrimination, and the other is whether a perfect local discrimination can be achieved by merely a sequential scheme. In this paper, we answer the two questions for some unitary operations U1 and U2 with locally unitary equivalent to a diagonal unitary matrix in a product basis. Specifically, we give the minimal number of runs needed for the local discrimination, which is the same with that needed for the global discrimination. In this sense, the local operation works the same with the global one. Moreover, when adding the local property to U1 or U2, we present that the perfect local discrimination can be also realized by merely a sequential scheme with the minimal number of runs. Both results contribute to saving the resources used for the discrimination.

摘要

已经证明,任何两个不同的多方酉操作通过有限次数的本地操作和经典通信是完全可区分的。同时,留下了两个开放性问题。一个是如何确定本地区分所需的最少运行次数,另一个是是否仅通过顺序方案就能实现完美的本地区分。在本文中,我们针对一些在乘积基下局部酉等价于对角酉矩阵的酉操作U1和U2回答了这两个问题。具体而言,我们给出了本地区分所需的最少运行次数,它与全局区分所需的次数相同。从这个意义上说,本地操作与全局操作的效果相同。此外,当给U1或U2添加局部性质时,我们表明仅通过具有最少运行次数的顺序方案也能实现完美的本地区分。这两个结果都有助于节省用于区分的资源。

相似文献

2
Entanglement is not necessary for perfect discrimination between unitary operations.
Phys Rev Lett. 2007 Mar 9;98(10):100503. doi: 10.1103/PhysRevLett.98.100503.
3
Local distinguishability of multipartite unitary operations.
Phys Rev Lett. 2008 Jan 18;100(2):020503. doi: 10.1103/PhysRevLett.100.020503. Epub 2008 Jan 17.
5
Statistical distinguishability between unitary operations.
Phys Rev Lett. 2001 Oct 22;87(17):177901. doi: 10.1103/PhysRevLett.87.177901. Epub 2001 Oct 4.
6
Distinguishing arbitrary multipartite basis unambiguously using local operations and classical communication.
Phys Rev Lett. 2007 Jun 8;98(23):230502. doi: 10.1103/PhysRevLett.98.230502. Epub 2007 Jun 4.
7
Bounds on multipartite entangled orthogonal state discrimination using local operations and classical communication.
Phys Rev Lett. 2006 Feb 3;96(4):040501. doi: 10.1103/PhysRevLett.96.040501. Epub 2006 Feb 2.
8
Perfect distinguishability of quantum operations.
Phys Rev Lett. 2009 Nov 20;103(21):210501. doi: 10.1103/PhysRevLett.103.210501.
9
Multicopy Adaptive Local Discrimination: Strongest Possible Two-Qubit Nonlocal Bases.
Phys Rev Lett. 2021 May 28;126(21):210505. doi: 10.1103/PhysRevLett.126.210505.
10
Hiding classical data in multipartite quantum states.
Phys Rev Lett. 2002 Aug 26;89(9):097905. doi: 10.1103/PhysRevLett.89.097905. Epub 2002 Aug 13.

引用本文的文献

1
Local certification of unitary operations.
Sci Rep. 2024 Nov 4;14(1):26588. doi: 10.1038/s41598-024-75148-z.
2
Excluding false negative error in certification of quantum channels.
Sci Rep. 2021 Nov 5;11(1):21716. doi: 10.1038/s41598-021-00444-x.
3
On the optimal certification of von Neumann measurements.
Sci Rep. 2021 Feb 11;11(1):3623. doi: 10.1038/s41598-021-81325-1.

本文引用的文献

2
Perfect distinguishability of quantum operations.
Phys Rev Lett. 2009 Nov 20;103(21):210501. doi: 10.1103/PhysRevLett.103.210501.
3
All entangled states are useful for channel discrimination.
Phys Rev Lett. 2009 Jun 26;102(25):250501. doi: 10.1103/PhysRevLett.102.250501. Epub 2009 Jun 24.
4
Quantum circuit architecture.
Phys Rev Lett. 2008 Aug 8;101(6):060401. doi: 10.1103/PhysRevLett.101.060401. Epub 2008 Aug 4.
5
Local distinguishability of multipartite unitary operations.
Phys Rev Lett. 2008 Jan 18;100(2):020503. doi: 10.1103/PhysRevLett.100.020503. Epub 2008 Jan 17.
6
Unitary transformations can be distinguished locally.
Phys Rev Lett. 2007 Oct 26;99(17):170401. doi: 10.1103/PhysRevLett.99.170401. Epub 2007 Oct 23.
7
Entanglement is not necessary for perfect discrimination between unitary operations.
Phys Rev Lett. 2007 Mar 9;98(10):100503. doi: 10.1103/PhysRevLett.98.100503.
8
Identification and distance measures of measurement apparatus.
Phys Rev Lett. 2006 May 26;96(20):200401. doi: 10.1103/PhysRevLett.96.200401. Epub 2006 May 22.
9
Using entanglement improves the precision of quantum measurements.
Phys Rev Lett. 2001 Dec 31;87(27 Pt 1):270404. doi: 10.1103/PhysRevLett.87.270404. Epub 2001 Dec 12.
10
Statistical distinguishability between unitary operations.
Phys Rev Lett. 2001 Oct 22;87(17):177901. doi: 10.1103/PhysRevLett.87.177901. Epub 2001 Oct 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验