Suppr超能文献

基于多层感知器神经网络的藻蓝蛋白色素浓度建模方法:美国查尔斯河下游浮标的案例研究

Multilayer perceptron neural network-based approach for modeling phycocyanin pigment concentrations: case study from lower Charles River buoy, USA.

作者信息

Heddam Salim

机构信息

Faculty of Science, Agronomy Department, Hydraulics Division University, 20 Août 1955, Route EL Hadaik, BP 26, Skikda, Algeria.

出版信息

Environ Sci Pollut Res Int. 2016 Sep;23(17):17210-25. doi: 10.1007/s11356-016-6905-9. Epub 2016 May 24.

Abstract

This paper proposes multilayer perceptron neural network (MLPNN) to predict phycocyanin (PC) pigment using water quality variables as predictor. In the proposed model, four water quality variables that are water temperature, dissolved oxygen, pH, and specific conductance were selected as the inputs for the MLPNN model, and the PC as the output. To demonstrate the capability and the usefulness of the MLPNN model, a total of 15,849 data measured at 15-min (15 min) intervals of time are used for the development of the model. The data are collected at the lower Charles River buoy, and available from the US Environmental Protection Agency (USEPA). For comparison purposes, a multiple linear regression (MLR) model that was frequently used for predicting water quality variables in previous studies is also built. The performances of the models are evaluated using a set of widely used statistical indices. The performance of the MLPNN and MLR models is compared with the measured data. The obtained results show that (i) the all proposed MLPNN models are more accurate than the MLR models and (ii) the results obtained are very promising and encouraging for the development of phycocyanin-predictive models.

摘要

本文提出使用多层感知器神经网络(MLPNN),以水质变量作为预测指标来预测藻蓝蛋白(PC)色素。在所提出的模型中,选择了四个水质变量,即水温、溶解氧、pH值和电导率,作为MLPNN模型的输入,而将PC作为输出。为了证明MLPNN模型的能力和实用性,总共使用了以15分钟间隔测量的15849个数据来开发该模型。这些数据是在查尔斯河下游浮标处收集的,可从美国环境保护局(USEPA)获取。为了进行比较,还构建了一个在先前研究中常用于预测水质变量的多元线性回归(MLR)模型。使用一组广泛使用的统计指标来评估模型的性能。将MLPNN和MLR模型的性能与实测数据进行比较。所得结果表明:(i)所有提出的MLPNN模型都比MLR模型更准确;(ii)所得结果对于藻蓝蛋白预测模型的开发非常有前景且令人鼓舞。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验