Chiang Kuo-Feng, Cheng Chien-Ming, Tsai Shih-Chuan, Lin Wan-Yu, Chang Yu-Cheng, Huang Jin-Long, Hung Guang-Uei, Kao Chia-Hung, Chen Shih-Ann, Chou Pesus, Chen Ji
Cardiovascular center, Taichung Veterans General Hospital, Taichung, Taiwan.
Division of Cardiology, Department of Medicine, Fong Yuan Hospital, Department of Health of Executive Yuan, Taichung, Taiwan.
Ann Nucl Med. 2016 Aug;30(7):484-93. doi: 10.1007/s12149-016-1083-x. Epub 2016 May 25.
Cardiac resynchronization therapy (CRT) can provide cardiac reverse remodeling (RR), which may include mechanical reverse remodeling (MRR) and/or electrical reverse remodeling (ERR). However, uncoupling of MRR and ERR is not uncommon, and the underlying mechanisms are not clear. This study aimed to evaluate the relationship of myocardial substrate characteristics as assessed by myocardial perfusion imaging (MPI) and cardiac RR post-CRT.
Forty-one patients (26 men, mean age 66 ± 10 years) with heart failure received CRT for at least 12 months were assigned to three groups according to their levels of RR: I, MRR + ERR (ESV reduced ≥15 % and intrinsic QRS duration reduced ≥10 ms); II, MRR only (ESV reduced ≥15 %); and III, non-responder (the others). All the patients also underwent MPI under transient CRT-off to evaluate the intrinsic myocardial substrates, including myocardial scar, LV volumes and function, systolic dyssynchrony, and activation sequences. In addition, ventricular tachycardia (VT) and ventricular fibrillation (VF) detected by the CRT devices during follow-up periods were also recorded.
Quantitative analysis of MPI showed that there were significant differences for scar burden [15.9 ± 9.5, 26.8 ± 16.1, and 45.6 ± 15.1 % for group I (n = 15), II (n = 16), and III (n = 10), respectively, p < 0.001], EDV (136.6 ± 64.9, 221.6 ± 123.9, and 351.8 ± 216.3 ml, p = 0.002), ESV (82.6 ± 59.8, 172.3 ± 117.2, and 293.3 ± 209.6 ml, p = 0.001), LVEF (44.9 ± 15.0, 25.6 ± 10.9, and 21.5 ± 11.7 %, p < 0.001), systolic phase SD (23.4° ± 10.3°, 36.0° ± 16.2°, and 57.0° ± 22.2°, p < 0.001), and bandwidth (72.5° ± 31.1°, 113.4° ± 56.4°, and 199.1° ± 90.1°, p < 0.001). Myocardial scar interfered with the normal propagation of mechanical activation, resulting in heterogeneous activation sequences. Compared with group II (MRR only), group I (ERR + MRR) had significantly less initial activation segments (1.9 ± 1.0 vs. 2.6 ± 0.7, p < 0.05) and shorter maximal contraction delay (46.9° ± 12.9° vs. 58.8° ± 18.5°, p < 0.05). During the periods of follow-up, 21 patients developed VT/VF, including only 1 patient (1 VT) in group I (6.7 %), 8 patients (7 VT and 1 VF) in group II (50 %), and 9 patients (7 VT and 5 VF) in group III (90 %).
The characteristics of myocardial substrates as assessed by MPI differed significantly between different levels of cardiac RR post-CRT. Myocardial scar played an important role in the development of ERR. Different cardiac RR levels contributed to different incidences of ventricular arrhythmia, and the combination of ERR and MRR provided highest anti-arrhythmic effects.
心脏再同步治疗(CRT)可实现心脏逆向重构(RR),这可能包括机械性逆向重构(MRR)和/或电逆向重构(ERR)。然而,MRR与ERR解偶联的情况并不少见,其潜在机制尚不清楚。本研究旨在评估通过心肌灌注成像(MPI)评估的心肌基质特征与CRT术后心脏RR之间的关系。
41例(26例男性,平均年龄66±10岁)接受CRT至少12个月的心力衰竭患者,根据RR水平分为三组:I组,MRR+ERR(左室收缩末期容积[ESV]降低≥15%且固有QRS时限降低≥10毫秒);II组,仅MRR(ESV降低≥15%);III组,无反应者(其他患者)。所有患者在CRT暂时关闭状态下还接受了MPI检查,以评估固有心肌基质,包括心肌瘢痕、左室容积和功能、收缩不同步以及激动顺序。此外,还记录了随访期间CRT设备检测到的室性心动过速(VT)和室颤(VF)情况。
MPI定量分析显示,三组患者的瘢痕负荷[I组(n=15)为15.9±9.5%、II组(n=16)为26.8±16.1%、III组(n=10)为45.6±15.1%,p<0.001]、舒张末期容积(EDV,分别为136.6±64.9、221.6±123.9和351.8±216.3ml,p=0.002)、ESV(分别为82.6±59.8、172.3±117.2和293.3±209.6ml,p=0.001)、左室射血分数(LVEF,分别为44.9±15.0%、25.6±10.9%和21.5±11.7%,p<0.001)、收缩期标准差(SD,分别为23.4°±10.3°、36.0°±16.2°和57.0°±22.2°,p<0.001)以及带宽(分别为72.5°±31.1°、113.4°±56.4°和199.1°±90.1°,p<0.001)存在显著差异。心肌瘢痕干扰了机械激动的正常传导,导致激动顺序不均一。与II组(仅MRR)相比,I组(ERR+MRR)的初始激动节段明显更少(1.9±1.0对2.6±0.7,p<0.05),最大收缩延迟更短(46.9°±12.9°对58.8°±18.5°,p<0.05)。随访期间,21例患者发生VT/VF,其中I组仅1例患者(1次VT,6.7%),II组8例患者(7次VT和1次VF,50%),III组9例患者(7次VT和5次VF,90%)。
CRT术后不同心脏RR水平之间,通过MPI评估的心肌基质特征存在显著差异。心肌瘢痕在ERR的发生中起重要作用。不同的心脏RR水平导致不同的室性心律失常发生率,ERR与MRR联合提供了最高的抗心律失常效果。