Gertz Hanna, Hilger Maximilian, Hegele Mathias, Fiehler Katja
Experimental Psychology, Justus-Liebig University Giessen, Germany.
Experimental Psychology, Philipps University Marburg, Germany.
Neuroimage. 2016 Sep;138:109-122. doi: 10.1016/j.neuroimage.2016.05.043. Epub 2016 May 17.
Previous studies have shown that beliefs about the human origin of a stimulus are capable of modulating the coupling of perception and action. Such beliefs can be based on top-down recognition of the identity of an actor or bottom-up observation of the behavior of the stimulus. Instructed human agency has been shown to lead to superior tracking performance of a moving dot as compared to instructed computer agency, especially when the dot followed a biological velocity profile and thus matched the predicted movement, whereas a violation of instructed human agency by a nonbiological dot motion impaired oculomotor tracking (Zwickel et al., 2012). This suggests that the instructed agency biases the selection of predictive models on the movement trajectory of the dot motion. The aim of the present fMRI study was to examine the neural correlates of top-down and bottom-up modulations of perception-action couplings by manipulating the instructed agency (human action vs. computer-generated action) and the observable behavior of the stimulus (biological vs. nonbiological velocity profile). To this end, participants performed an oculomotor tracking task in an MRI environment. Oculomotor tracking activated areas of the eye movement network. A right-hemisphere occipito-temporal cluster comprising the motion-sensitive area V5 showed a preference for the biological as compared to the nonbiological velocity profile. Importantly, a mismatch between instructed human agency and a nonbiological velocity profile primarily activated medial-frontal areas comprising the frontal pole, the paracingulate gyrus, and the anterior cingulate gyrus, as well as the cerebellum and the supplementary eye field as part of the eye movement network. This mismatch effect was specific to the instructed human agency and did not occur in conditions with a mismatch between instructed computer agency and a biological velocity profile. Our results support the hypothesis that humans activate a specific predictive model for biological movements based on their own motor expertise. A violation of this predictive model causes costs as the movement needs to be corrected in accordance with incoming (nonbiological) sensory information.
以往的研究表明,关于刺激源人类起源的信念能够调节感知与行动的耦合。此类信念可以基于对行为者身份的自上而下的识别,或者基于对刺激行为的自下而上的观察。与指示的计算机动因相比,指示的人类动因已被证明能在移动点的跟踪性能方面表现更优,尤其是当该点遵循生物速度曲线从而与预测运动相匹配时;而当非生物点运动违反指示的人类动因时,会损害眼动跟踪(茨维克等,2012)。这表明指示的动因会影响对移动点运动轨迹预测模型的选择。本功能磁共振成像(fMRI)研究的目的是,通过操纵指示的动因(人类行动与计算机生成的行动)以及刺激的可观察行为(生物与非生物速度曲线),来研究感知 - 行动耦合的自上而下和自下而上调制的神经关联。为此,参与者在磁共振成像(MRI)环境中执行眼动跟踪任务。眼动跟踪激活了眼动网络区域。与非生物速度曲线相比,一个包含运动敏感区V5的右半球枕颞叶簇对生物速度曲线表现出偏好。重要的是,指示的人类动因与非生物速度曲线之间的不匹配主要激活了包括额极、旁扣带回和前扣带回在内的内侧额叶区域,以及作为眼动网络一部分的小脑和辅助眼区。这种不匹配效应特定于指示的人类动因,在指示的计算机动因与生物速度曲线不匹配的情况下并未出现。我们的结果支持这样一种假设,即人类基于自身的运动专业知识为生物运动激活一种特定的预测模型。违反这种预测模型会带来代价,因为运动需要根据传入的(非生物)感官信息进行校正。