Suppr超能文献

更智能的雨水系统。

Smarter Stormwater Systems.

机构信息

University of Michigan , Department of Civil and Environmental Engineering, Ann Arbor, Michigan 48109, United States.

University of Toledo , Department of Civil Engineering, Toledo, Ohio 43606, United States.

出版信息

Environ Sci Technol. 2016 Jul 19;50(14):7267-73. doi: 10.1021/acs.est.5b05870. Epub 2016 Jul 8.

Abstract

Existing stormwater systems require significant investments to meet challenges imposed by climate change, rapid urbanization, and evolving regulations. There is an unprecedented opportunity to improve urban water quality by equipping stormwater systems with low-cost sensors and controllers. This will transform their operation from static to adaptive, permitting them to be instantly "redesigned" to respond to individual storms and evolving land uses.

摘要

现有的雨水系统需要大量投资,以应对气候变化、快速城市化和不断变化的法规带来的挑战。通过为雨水系统配备低成本传感器和控制器,为提高城市水质提供了前所未有的机会。这将使它们的运行从静态转变为自适应,从而能够即时“重新设计”,以应对个别风暴和不断变化的土地利用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验