Cea Luis A, Bevilacqua Jorge A, Arriagada Christian, Cárdenas Ana María, Bigot Anne, Mouly Vincent, Sáez Juan C, Caviedes Pablo
Program of Anatomy and Developmental Biology, Faculty of Medicine, Institute of Biomedical Sciences, University of Chile, Av. Independencia #1027, Independencia, Santiago, Chile.
Departamento de Neurología y Neurocirugía, Hospital Clínico Universidad de Chile, Universidad de Chile, Santiago, Chile.
BMC Cell Biol. 2016 May 24;17 Suppl 1(Suppl 1):15. doi: 10.1186/s12860-016-0096-6.
Mutations in the gene encoding for dysferlin cause recessive autosomal muscular dystrophies called dysferlinopathies. These mutations induce several alterations in skeletal muscles, including, inflammation, increased membrane permeability and cell death. Despite the fact that the etiology of dysferlinopathies is known, the mechanism that explains the aforementioned alterations is still elusive. Therefore, we have now evaluated the potential involvement of connexin based hemichannels in the pathophysiology of dysferlinopathies.
Human deltoid muscle biopsies of 5 Chilean dysferlinopathy patients exhibited the presence of muscular connexins (Cx40.1, Cx43 and Cx45). The presence of these connexins was also observed in human myotubes derived from immortalized myoblasts derived from other patients with mutated forms of dysferlin. In addition to the aforementioned connexins, these myotubes expressed functional connexin based hemichannels, evaluated by ethidium uptake assays, as opposed to myotubes obtained from a normal human muscle cell line, RCMH. This response was reproduced in a knock-down model of dysferlin, by treating RCMH cell line with small hairpin RNA specific for dysferlin (RCMH-sh Dysferlin). Also, the presence of P2X7 receptor and the transient receptor potential channel, TRPV2, another Ca(2+) permeable channels, was detected in the myotubes expressing mutated dysferlin, and an elevated resting intracellular Ca(2+) level was found in the latter myotubes, which was in turn reduced to control levels in the presence of the molecule D4, a selective Cx HCs inhibitor.
The data suggests that dysferlin deficiency, caused by mutation or downregulation of dysferlin, promotes the expression of Cx HCs. Then, the de novo expression Cx HC causes a dysregulation of intracellular free Ca(2+) levels, which could underlie muscular damage associated to dysferlin mutations. This mechanism could constitute a potential therapeutical target in dysferlinopathies.
编码dysferlin的基因突变会导致隐性常染色体肌肉营养不良,即dysferlin病。这些突变会在骨骼肌中引发多种改变,包括炎症、膜通透性增加和细胞死亡。尽管dysferlin病的病因已知,但解释上述改变的机制仍不清楚。因此,我们现在评估了基于连接蛋白的半通道在dysferlin病病理生理学中的潜在作用。
对5名智利dysferlin病患者的三角肌活检显示存在肌肉连接蛋白(Cx40.1、Cx43和Cx45)。在源自其他dysferlin突变形式患者的永生化成肌细胞的人肌管中也观察到了这些连接蛋白的存在。除了上述连接蛋白外,通过溴化乙锭摄取试验评估,这些肌管表达了基于连接蛋白的功能性半通道,这与从正常人肌肉细胞系RCMH获得的肌管不同。通过用针对dysferlin的小发夹RNA处理RCMH细胞系(RCMH-sh Dysferlin),在dysferlin的敲低模型中重现了这种反应。此外,在表达突变dysferlin的肌管中检测到P2X7受体和瞬时受体电位通道TRPV2(另一种Ca(2+) 可渗透通道)的存在,并且在后者的肌管中发现静息细胞内Ca(2+) 水平升高,而在存在分子D4(一种选择性Cx HCs抑制剂)的情况下,该水平又降至对照水平。
数据表明,由dysferlin突变或下调引起的dysferlin缺乏会促进Cx HCs的表达。然后,新生的Cx HC表达导致细胞内游离Ca(2+) 水平失调,这可能是与dysferlin突变相关的肌肉损伤的基础。这种机制可能构成dysferlin病的潜在治疗靶点。