Vera Brenda, Vázquez Karina, Mascayano Carolina, Tapia Ricardo A, Espinosa Victoria, Soto-Delgado Jorge, Salas Cristian O, Paulino Margot
a Centro de Bioinformática estructural, DETEMA, Facultad de Química , UdelaR , Montevideo , Uruguay.
b Facultad de Química , Pontificia Universidad Católica de Chile , Santiago , Chile.
J Biomol Struct Dyn. 2017 Jun;35(8):1785-1803. doi: 10.1080/07391102.2016.1195283. Epub 2016 Jul 15.
A set of aryloxy-quinones, previously synthesized and evaluated against Trypanosoma cruzi epimastigotes cultures, were found more potent and selective than nifurtimox. One of the possible mechanisms of the trypanocidal activity of these quinones could be inhibition of trypanothione reductase (TR). Considering that glutathione reductase (GR) is the equivalent of TR in humans, biochemical, kinetic, and molecular docking studies in TR and GR were envisaged and compared with the trypanocidal and cytotoxic data of a set of aryloxy-quinones. Biochemical assays indicated that three naphthoquinones (Nq-h, Nq-g, and Nq-d) selectively inhibit TR and the TR kinetic analyses indicated that Nq-h inhibit TR in a noncompetitive mechanism. Molecular dockings were performed in TR and GR in the following three putative binding sites: the catalytic site, the dimer interface, and the nicotinamide adenine dinucleotide phosphate-binding site. In TR and GR, the aryloxy-quinones were found to exhibit high affinity for a site near it cognate-binding site in a place in which the noncompetitive kinetics could be justified. Taking as examples the three compounds with TR specificity (TRS) (Nq-h, Nq-g, and Nq-d), the presence of a network of contacts with the quinonic ring sustained by the triad of Lys62, Met400', Ser464' residues, seems to contribute hardly to the TRS. Compound Nq-b, a naphthoquinone with nitrophenoxy substituent, proved to be the best scaffold for the design of trypanocidal compounds with low toxicity. However, the compound displayed only a poor and non-selective effect toward TR indicating that TR inhibition is not the main reason for the antiparasitic activity of the aryloxy-quinones.
一组先前合成并针对克氏锥虫前鞭毛体培养物进行评估的芳氧基醌,被发现比硝呋莫司更有效且更具选择性。这些醌类化合物杀锥虫活性的一种可能机制可能是抑制锥虫硫氧还蛋白还原酶(TR)。鉴于谷胱甘肽还原酶(GR)在人体内等同于TR,设想了对TR和GR进行生化、动力学及分子对接研究,并与一组芳氧基醌的杀锥虫和细胞毒性数据进行比较。生化分析表明,三种萘醌(Nq-h、Nq-g和Nq-d)选择性抑制TR,TR动力学分析表明Nq-h以非竞争性机制抑制TR。在TR和GR的以下三个假定结合位点进行了分子对接:催化位点、二聚体界面和烟酰胺腺嘌呤二核苷酸磷酸结合位点。在TR和GR中,发现芳氧基醌对其同源结合位点附近的一个位点表现出高亲和力,在该位点非竞争性动力学可以得到解释。以三种具有TR特异性(TRS)的化合物(Nq-h、Nq-g和Nq-d)为例,由Lys62、Met400'、Ser464'残基三联体维持的与醌环的接触网络的存在,似乎对TRS贡献不大。化合物Nq-b是一种带有硝基苯氧基取代基的萘醌,被证明是设计低毒性杀锥虫化合物的最佳支架。然而,该化合物对TR仅表现出微弱且非选择性的作用,表明TR抑制不是芳氧基醌抗寄生虫活性的主要原因。