Suppr超能文献

人血浆中带负电的低密度脂蛋白的热稳定性:低密度脂蛋白聚集的一种矛盾行为。

Thermal stability of human plasma electronegative low-density lipoprotein: A paradoxical behavior of low-density lipoprotein aggregation.

作者信息

Rull Anna, Jayaraman Shobini, Gantz Donald L, Rivas-Urbina Andrea, Pérez-Cuellar Montserrat, Ordóñez-Llanos Jordi, Sánchez-Quesada Jose Luis, Gursky Olga

机构信息

Cardiovascular Biochemistry Group, Research Institute of the Hospital de Sant Pau (IIB Sant Pau), Barcelona, Spain.

Department of Physiology & Biophysics, Boston University School of Medicine, 700 Albany Street, Boston, MA 02118, USA.

出版信息

Biochim Biophys Acta. 2016 Sep;1861(9 Pt A):1015-1024. doi: 10.1016/j.bbalip.2016.05.008. Epub 2016 May 24.

Abstract

Low-density lipoprotein (LDL) aggregation is central in triggering atherogenesis. A minor fraction of electronegative plasma LDL, termed LDL(-), plays a special role in atherogenesis. To better understand this role, we analyzed the kinetics of aggregation, fusion and disintegration of human LDL and its fractions, LDL(+) and LDL(-). Thermal denaturation of LDL was monitored by spectroscopy and electron microscopy. Initially, LDL(-) aggregated and fused faster than LDL(+), but later the order reversed. Most LDL(+) disintegrated and precipitated upon prolonged heating. In contrast, LDL(-) partially retained lipoprotein morphology and formed soluble aggregates. Biochemical analysis of all fractions showed no significant degradation of major lipids, mild phospholipid oxidation, and an increase in non-esterified fatty acid (NEFA) upon thermal denaturation. The main baseline difference between LDL subfractions was higher content of NEFA in LDL(-). Since NEFA promote lipoprotein fusion, increased NEFA content can explain rapid initial aggregation and fusion of LDL(-) but not its resistance to extensive disintegration. Partial hydrolysis of apoB upon heating was similar in LDL subfractions, suggesting that minor proteins importantly modulate LDL disintegration. Unlike LDL(+), LDL(-) contains small amounts of apoA-I and apoJ. Addition of exogenous apoA-I to LDL(+) hampered lipoprotein aggregation, fusion and precipitation, while depletion of endogenous apoJ had an opposite effect. Therefore, the initial rapid aggregation of LDL(-) is apparently counterbalanced by the stabilizing effects of minor proteins such as apoA-I and apoJ. These results help identify key determinants for LDL aggregation, fusion and coalescence into lipid droplets in vivo.

摘要

低密度脂蛋白(LDL)聚集在引发动脉粥样硬化过程中起核心作用。一小部分带负电荷的血浆LDL,称为LDL(-),在动脉粥样硬化中发挥特殊作用。为了更好地理解这一作用,我们分析了人LDL及其组分LDL(+)和LDL(-)的聚集、融合和解离动力学。通过光谱学和电子显微镜监测LDL的热变性。最初,LDL(-)的聚集和融合比LDL(+)快,但后来顺序颠倒。大多数LDL(+)在长时间加热后解体并沉淀。相比之下,LDL(-)部分保留脂蛋白形态并形成可溶性聚集体。对所有组分的生化分析表明,主要脂质无显著降解,磷脂有轻度氧化,热变性后非酯化脂肪酸(NEFA)增加。LDL亚组分之间的主要基线差异是LDL(-)中NEFA含量较高。由于NEFA促进脂蛋白融合,增加的NEFA含量可以解释LDL(-)最初的快速聚集和融合,但不能解释其对广泛解体的抗性。加热后载脂蛋白B的部分水解在LDL亚组分中相似,表明次要蛋白质对LDL解体有重要调节作用。与LDL(+)不同,LDL(-)含有少量载脂蛋白A-I和载脂蛋白J。向LDL(+)中添加外源性载脂蛋白A-I可阻碍脂蛋白的聚集、融合和沉淀,而内源性载脂蛋白J的消耗则产生相反的效果。因此,LDL(-)最初的快速聚集显然被载脂蛋白A-I和载脂蛋白J等次要蛋白质的稳定作用所抵消。这些结果有助于确定体内LDL聚集、融合以及聚合成脂滴的关键决定因素。

相似文献

1
Thermal stability of human plasma electronegative low-density lipoprotein: A paradoxical behavior of low-density lipoprotein aggregation.
Biochim Biophys Acta. 2016 Sep;1861(9 Pt A):1015-1024. doi: 10.1016/j.bbalip.2016.05.008. Epub 2016 May 24.
3
Aggregated electronegative low density lipoprotein in human plasma shows a high tendency toward phospholipolysis and particle fusion.
J Biol Chem. 2010 Oct 15;285(42):32425-35. doi: 10.1074/jbc.M110.139691. Epub 2010 Jul 29.
4
Low-density lipoprotein aggregation is inhibited by apolipoprotein J-derived mimetic peptide D-[113-122]apoJ.
Biochim Biophys Acta Mol Cell Biol Lipids. 2020 Feb;1865(2):158541. doi: 10.1016/j.bbalip.2019.158541. Epub 2019 Oct 28.
5
Structural basis for thermal stability of human low-density lipoprotein.
Biochemistry. 2005 Mar 15;44(10):3965-71. doi: 10.1021/bi047493v.
7
Effects of oxidation on the structure and stability of human low-density lipoprotein.
Biochemistry. 2007 May 15;46(19):5790-7. doi: 10.1021/bi700225a. Epub 2007 Apr 20.
9
Circulating low density lipoprotein (LDL).
Horm Mol Biol Clin Investig. 2018 Jul 31;35(2):/j/hmbci.2018.35.issue-2/hmbci-2018-0024/hmbci-2018-0024.xml. doi: 10.1515/hmbci-2018-0024.
10

引用本文的文献

1
We Must Abandon the Myth: Oxidized Low-density Lipoprotein is not a Lipoprotein that Plays a Key Role in Atherogenesis.
Curr Med Chem. 2025;32(15):2899-2914. doi: 10.2174/0109298673301236240311113807.
2
LDL binding to cell receptors and extracellular matrix is proatherogenic in obesity but improves after bariatric surgery.
J Lipid Res. 2023 Nov;64(11):100451. doi: 10.1016/j.jlr.2023.100451. Epub 2023 Sep 28.
3
Binding to heparin triggers deleterious structural and biochemical changes in human low-density lipoprotein, which are amplified in hyperglycemia.
Biochim Biophys Acta Mol Cell Biol Lipids. 2020 Aug;1865(8):158712. doi: 10.1016/j.bbalip.2020.158712. Epub 2020 Apr 11.
4
Effects of triacylglycerol on the structural remodeling of human plasma very low- and low-density lipoproteins.
Biochim Biophys Acta Mol Cell Biol Lipids. 2019 Jul;1864(7):1061-1071. doi: 10.1016/j.bbalip.2019.03.001. Epub 2019 Mar 5.

本文引用的文献

1
Structural stability and functional remodeling of high-density lipoproteins.
FEBS Lett. 2015 Sep 14;589(19 Pt A):2627-39. doi: 10.1016/j.febslet.2015.02.028. Epub 2015 Mar 5.
3
Aggregation and fusion of low-density lipoproteins in vivo and in vitro.
Biomol Concepts. 2013 Oct;4(5):501-18. doi: 10.1515/bmc-2013-0016.
4
Misfolding of apoprotein B-100, LDL aggregation and 17-β -estradiol in atherogenesis.
Curr Med Chem. 2014;21(20):2276-83. doi: 10.2174/0929867321666140120114944.
5
Electronegative LDL: a circulating modified LDL with a role in inflammation.
Mediators Inflamm. 2013;2013:181324. doi: 10.1155/2013/181324. Epub 2013 Aug 22.
7
Matrix metalloproteinases in vascular physiology and disease.
Vascular. 2012 Aug;20(4):210-6. doi: 10.1258/vasc.2011.201202. Epub 2012 Aug 15.
8
Kinetic analysis of thermal stability of human low density lipoproteins: a model for LDL fusion in atherogenesis.
J Lipid Res. 2012 Oct;53(10):2175-2185. doi: 10.1194/jlr.M029629. Epub 2012 Jul 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验