Rull Anna, Jayaraman Shobini, Gantz Donald L, Rivas-Urbina Andrea, Pérez-Cuellar Montserrat, Ordóñez-Llanos Jordi, Sánchez-Quesada Jose Luis, Gursky Olga
Cardiovascular Biochemistry Group, Research Institute of the Hospital de Sant Pau (IIB Sant Pau), Barcelona, Spain.
Department of Physiology & Biophysics, Boston University School of Medicine, 700 Albany Street, Boston, MA 02118, USA.
Biochim Biophys Acta. 2016 Sep;1861(9 Pt A):1015-1024. doi: 10.1016/j.bbalip.2016.05.008. Epub 2016 May 24.
Low-density lipoprotein (LDL) aggregation is central in triggering atherogenesis. A minor fraction of electronegative plasma LDL, termed LDL(-), plays a special role in atherogenesis. To better understand this role, we analyzed the kinetics of aggregation, fusion and disintegration of human LDL and its fractions, LDL(+) and LDL(-). Thermal denaturation of LDL was monitored by spectroscopy and electron microscopy. Initially, LDL(-) aggregated and fused faster than LDL(+), but later the order reversed. Most LDL(+) disintegrated and precipitated upon prolonged heating. In contrast, LDL(-) partially retained lipoprotein morphology and formed soluble aggregates. Biochemical analysis of all fractions showed no significant degradation of major lipids, mild phospholipid oxidation, and an increase in non-esterified fatty acid (NEFA) upon thermal denaturation. The main baseline difference between LDL subfractions was higher content of NEFA in LDL(-). Since NEFA promote lipoprotein fusion, increased NEFA content can explain rapid initial aggregation and fusion of LDL(-) but not its resistance to extensive disintegration. Partial hydrolysis of apoB upon heating was similar in LDL subfractions, suggesting that minor proteins importantly modulate LDL disintegration. Unlike LDL(+), LDL(-) contains small amounts of apoA-I and apoJ. Addition of exogenous apoA-I to LDL(+) hampered lipoprotein aggregation, fusion and precipitation, while depletion of endogenous apoJ had an opposite effect. Therefore, the initial rapid aggregation of LDL(-) is apparently counterbalanced by the stabilizing effects of minor proteins such as apoA-I and apoJ. These results help identify key determinants for LDL aggregation, fusion and coalescence into lipid droplets in vivo.
低密度脂蛋白(LDL)聚集在引发动脉粥样硬化过程中起核心作用。一小部分带负电荷的血浆LDL,称为LDL(-),在动脉粥样硬化中发挥特殊作用。为了更好地理解这一作用,我们分析了人LDL及其组分LDL(+)和LDL(-)的聚集、融合和解离动力学。通过光谱学和电子显微镜监测LDL的热变性。最初,LDL(-)的聚集和融合比LDL(+)快,但后来顺序颠倒。大多数LDL(+)在长时间加热后解体并沉淀。相比之下,LDL(-)部分保留脂蛋白形态并形成可溶性聚集体。对所有组分的生化分析表明,主要脂质无显著降解,磷脂有轻度氧化,热变性后非酯化脂肪酸(NEFA)增加。LDL亚组分之间的主要基线差异是LDL(-)中NEFA含量较高。由于NEFA促进脂蛋白融合,增加的NEFA含量可以解释LDL(-)最初的快速聚集和融合,但不能解释其对广泛解体的抗性。加热后载脂蛋白B的部分水解在LDL亚组分中相似,表明次要蛋白质对LDL解体有重要调节作用。与LDL(+)不同,LDL(-)含有少量载脂蛋白A-I和载脂蛋白J。向LDL(+)中添加外源性载脂蛋白A-I可阻碍脂蛋白的聚集、融合和沉淀,而内源性载脂蛋白J的消耗则产生相反的效果。因此,LDL(-)最初的快速聚集显然被载脂蛋白A-I和载脂蛋白J等次要蛋白质的稳定作用所抵消。这些结果有助于确定体内LDL聚集、融合以及聚合成脂滴的关键决定因素。