Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA.
Cell Syst. 2016 Jun 22;2(6):412-21. doi: 10.1016/j.cels.2016.04.014. Epub 2016 May 26.
Large-scale biological networks represent relationships between genes, but our understanding of how networks are functionally organized is limited. Here, I describe spatial analysis of functional enrichment (SAFE), a systematic method for annotating biological networks and examining their functional organization. SAFE visualizes the network in 2D space and measures the continuous distribution of functional enrichment across local neighborhoods, producing a list of the associated functions and a map of their relative positioning. I applied SAFE to annotate the Saccharomyces cerevisiae genetic interaction similarity network and protein-protein interaction network with gene ontology terms. SAFE annotations of the genetic network matched manually derived annotations, while taking less than 1% of the time, and proved robust to noise and sensitive to biological signal. Integration of genetic interaction and chemical genomics data using SAFE revealed a link between vesicle-mediate transport and resistance to the anti-cancer drug bortezomib. These results demonstrate the utility of SAFE for examining biological networks and understanding their functional organization.
大规模的生物网络代表了基因之间的关系,但我们对网络如何进行功能组织的理解是有限的。在这里,我描述了功能富集的空间分析(SAFE),这是一种系统的注释生物网络和检查其功能组织的方法。SAFE 将网络可视化在 2D 空间中,并测量功能富集在局部邻域中的连续分布,生成相关功能的列表和它们相对位置的图谱。我应用 SAFE 对酿酒酵母遗传相互作用相似网络和蛋白质-蛋白质相互作用网络进行了基因本体论术语的注释。遗传网络的 SAFE 注释与手动推导的注释相匹配,而时间不到 1%,并且对噪声具有鲁棒性,对生物信号敏感。使用 SAFE 对遗传相互作用和化学基因组学数据进行整合,揭示了囊泡介导的运输与抗癌症药物硼替佐米耐药性之间的联系。这些结果表明 SAFE 可用于检查生物网络并理解其功能组织。