Suppr超能文献

直接的肝细胞胰岛素信号传导是脂肪生成所必需的,但对抑制葡萄糖生成来说并非必需。

Direct Hepatocyte Insulin Signaling Is Required for Lipogenesis but Is Dispensable for the Suppression of Glucose Production.

作者信息

Titchenell Paul M, Quinn William J, Lu Mingjian, Chu Qingwei, Lu Wenyun, Li Changhong, Chen Helen, Monks Bobby R, Chen Julia, Rabinowitz Joshua D, Birnbaum Morris J

机构信息

Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.

Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA.

出版信息

Cell Metab. 2016 Jun 14;23(6):1154-1166. doi: 10.1016/j.cmet.2016.04.022. Epub 2016 May 26.

Abstract

During insulin-resistant states such as type II diabetes mellitus (T2DM), insulin fails to suppress hepatic glucose production (HGP) yet promotes lipid synthesis. This metabolic state has been termed "selective insulin resistance" to indicate a defect in one arm of the insulin-signaling cascade, potentially downstream of Akt. Here we demonstrate that Akt-dependent activation of mTORC1 and inhibition of Foxo1 are required and sufficient for de novo lipogenesis, suggesting that hepatic insulin signaling is likely to be intact in insulin-resistant states. Moreover, cell-nonautonomous suppression of HGP by insulin depends on a reduction of adipocyte lipolysis and serum FFAs but is independent of vagal efferents or glucagon signaling. These data are consistent with a model in which, during T2DM, intact liver insulin signaling drives enhanced lipogenesis while excess circulating FFAs become a dominant inducer of nonsuppressible HGP.

摘要

在胰岛素抵抗状态下,如2型糖尿病(T2DM),胰岛素无法抑制肝糖生成(HGP),却能促进脂质合成。这种代谢状态被称为“选择性胰岛素抵抗”,以表明胰岛素信号级联的一个环节存在缺陷,可能在Akt的下游。在这里,我们证明mTORC1的Akt依赖性激活和Foxo1的抑制对于从头脂肪生成是必需且充分的,这表明在胰岛素抵抗状态下肝脏胰岛素信号可能是完整的。此外,胰岛素对HGP的细胞非自主性抑制依赖于脂肪细胞脂解和血清游离脂肪酸(FFA)的减少,但与迷走神经传出纤维或胰高血糖素信号无关。这些数据与一个模型一致,即在T2DM期间,完整的肝脏胰岛素信号驱动脂肪生成增强,而过量循环的FFA成为不可抑制的HGP的主要诱导因素。

相似文献

1
Direct Hepatocyte Insulin Signaling Is Required for Lipogenesis but Is Dispensable for the Suppression of Glucose Production.
Cell Metab. 2016 Jun 14;23(6):1154-1166. doi: 10.1016/j.cmet.2016.04.022. Epub 2016 May 26.
3
Hepatic mTORC2 activates glycolysis and lipogenesis through Akt, glucokinase, and SREBP1c.
Cell Metab. 2012 May 2;15(5):725-38. doi: 10.1016/j.cmet.2012.03.015. Epub 2012 Apr 19.
4
Tuberous sclerosis complex-1 deficiency attenuates diet-induced hepatic lipid accumulation.
PLoS One. 2011 Mar 29;6(3):e18075. doi: 10.1371/journal.pone.0018075.
6
Coordinated regulation of hepatic FoxO1, PGC-1α and SREBP-1c facilitates insulin action and resistance.
Cell Signal. 2018 Mar;43:62-70. doi: 10.1016/j.cellsig.2017.12.005. Epub 2017 Dec 18.
7
Liver clock protein BMAL1 promotes de novo lipogenesis through insulin-mTORC2-AKT signaling.
J Biol Chem. 2014 Sep 12;289(37):25925-35. doi: 10.1074/jbc.M114.567628. Epub 2014 Jul 25.
8
9
The adipokine sFRP4 induces insulin resistance and lipogenesis in the liver.
Biochim Biophys Acta Mol Basis Dis. 2019 Oct 1;1865(10):2671-2684. doi: 10.1016/j.bbadis.2019.07.008. Epub 2019 Jul 20.
10
Bifurcation of insulin signaling pathway in rat liver: mTORC1 required for stimulation of lipogenesis, but not inhibition of gluconeogenesis.
Proc Natl Acad Sci U S A. 2010 Feb 23;107(8):3441-6. doi: 10.1073/pnas.0914798107. Epub 2010 Feb 1.

引用本文的文献

1
Resveratrol Impairs Insulin Signaling in Hepatic Cells via Activation of PKC and PTP1B Pathways.
Int J Mol Sci. 2025 Aug 1;26(15):7434. doi: 10.3390/ijms26157434.
3
Adipose tissue-derived PRXL2A suppresses hepatic lipogenesis in a study with male mice.
Nat Commun. 2025 Jul 16;16(1):6567. doi: 10.1038/s41467-025-61963-z.
4
Fu-Fang-Qi-Di-Hua-Yu-Tang Improves Diabetic Macrovascular Disease via PI3K/AKT Pathway Regulation.
Diabetes Metab Syndr Obes. 2025 Jul 8;18:2247-2265. doi: 10.2147/DMSO.S515521. eCollection 2025.
5
Insulin resistance in type 2 diabetes mellitus.
Nat Rev Endocrinol. 2025 Apr 17. doi: 10.1038/s41574-025-01114-y.
6
Spatial regulation of glucose and lipid metabolism by hepatic insulin signaling.
Cell Metab. 2025 Jul 1;37(7):1568-1583.e7. doi: 10.1016/j.cmet.2025.03.015. Epub 2025 Apr 16.
7
8
Dietary Restriction and Lipid Metabolism: Unveiling Pathways to Extended Healthspan.
Nutrients. 2024 Dec 23;16(24):4424. doi: 10.3390/nu16244424.

本文引用的文献

3
Decreased expression of hepatic glucokinase in type 2 diabetes.
Mol Metab. 2014 Dec 18;4(3):222-6. doi: 10.1016/j.molmet.2014.12.007. eCollection 2015 Mar.
4
Hepatic acetyl CoA links adipose tissue inflammation to hepatic insulin resistance and type 2 diabetes.
Cell. 2015 Feb 12;160(4):745-758. doi: 10.1016/j.cell.2015.01.012. Epub 2015 Feb 5.
7
A noncanonical, GSK3-independent pathway controls postprandial hepatic glycogen deposition.
Cell Metab. 2013 Jul 2;18(1):99-105. doi: 10.1016/j.cmet.2013.06.001.
8
Biguanides suppress hepatic glucagon signalling by decreasing production of cyclic AMP.
Nature. 2013 Feb 14;494(7436):256-60. doi: 10.1038/nature11808. Epub 2013 Jan 6.
9
Strategies for the design of hepatoselective glucokinase activators to treat type 2 diabetes.
Expert Opin Drug Discov. 2013 Mar;8(3):319-30. doi: 10.1517/17460441.2013.748744. Epub 2013 Jan 6.
10
Central nervous system control of metabolism.
Nature. 2012 Nov 15;491(7424):357-63. doi: 10.1038/nature11705.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验