Suppr超能文献

基于石墨烯的聚二甲基硅氧烷纳米复合材料的相分离诱导动态自增强。

Interphase Induced Dynamic Self-Stiffening in Graphene-Based Polydimethylsiloxane Nanocomposites.

机构信息

Department of Materials Science and NanoEngineering, Rice University, Houston, TX, 77005, USA.

Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China.

出版信息

Small. 2016 Jul;12(27):3723-31. doi: 10.1002/smll.201600170. Epub 2016 May 31.

Abstract

The ability to rearrange microstructures and self-stiffen in response to dynamic external mechanical stimuli is critical for biological tissues to adapt to the environment. While for most synthetic materials, subjecting to repeated mechanical stress lower than their yield point would lead to structural failure. Here, it is reported that the graphene-based polydimethylsiloxane (PDMS) nanocomposite, a chemically and physically cross-linked system, exhibits an increase in the storage modulus under low-frequency, low-amplitude dynamic compressive loading. Cross-linking density statistics and molecular dynamics calculations show that the dynamic self-stiffening could be attributed to the increase in physical cross-linking density, resulted from the re-alignment and re-orientation of polymer chains along the surface of nano-fillers that constitute an interphase. Consequently, the interfacial interaction between PDMS-nano-fillers and the mobility of polymer chain, which depend on the degree of chemical cross-linking and temperature, are important factors defining the observed performance of self-stiffening. The understanding of the dynamic self-stiffening mechanism lays the ground for the future development of adaptive structural materials and bio-compatible, load-bearing materials for tissue engineering applications.

摘要

生物组织能够响应动态外部机械刺激来重新排列微观结构并自我增强,这对于适应环境至关重要。然而,对于大多数合成材料来说,在低于屈服点的重复机械应力下会导致结构失效。本文报道了基于石墨烯的聚二甲基硅氧烷(PDMS)纳米复合材料,这是一种化学和物理交联系统,在低频、低幅度动态压缩载荷下表现出储能模量的增加。交联密度统计和分子动力学计算表明,动态自增强可归因于物理交联密度的增加,这是由于聚合物链沿着构成相间的纳米填料表面重新排列和重新取向所致。因此,PDMS-纳米填料之间的界面相互作用以及聚合物链的迁移率取决于化学交联的程度和温度,这些都是决定自增强观察性能的重要因素。对动态自增强机制的理解为未来自适应结构材料和用于组织工程应用的生物兼容、承重材料的发展奠定了基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验