Beutier Héloïse, Gillis Caitlin M, Iannascoli Bruno, Godon Ophélie, England Patrick, Sibilano Riccardo, Reber Laurent L, Galli Stephen J, Cragg Mark S, Van Rooijen Nico, Mancardi David A, Bruhns Pierre, Jönsson Friederike
Department of Immunology, Unit of Antibodies in Therapy and Pathology, Institut Pasteur, Paris, France; INSERM, U1222, Paris, France; Université Pierre et Marie Curie, Paris, France.
Department of Immunology, Unit of Antibodies in Therapy and Pathology, Institut Pasteur, Paris, France; INSERM, U1222, Paris, France.
J Allergy Clin Immunol. 2017 Jan;139(1):269-280.e7. doi: 10.1016/j.jaci.2016.03.028. Epub 2016 Apr 26.
Animal models have demonstrated that allergen-specific IgG confers sensitivity to systemic anaphylaxis that relies on IgG Fc receptors (FcγRs). Mouse IgG and IgG bind activating FcγRI, FcγRIII, and FcγRIV and inhibitory FcγRIIB; mouse IgG binds only FcγRIII and FcγRIIB. Although these interactions are of strikingly different affinities, these 3 IgG subclasses have been shown to enable induction of systemic anaphylaxis.
We sought to determine which pathways control the induction of IgG-, IgG-, and IgG-dependent passive systemic anaphylaxis.
Mice were sensitized with IgG, IgG, or IgG anti-trinitrophenyl mAbs and challenged with trinitrophenyl-BSA intravenously to induce systemic anaphylaxis that was monitored by using rectal temperature. Anaphylaxis was evaluated in mice deficient for FcγRs injected with mediator antagonists or in which basophils, monocytes/macrophages, or neutrophils had been depleted. FcγR expression was evaluated on these cells before and after anaphylaxis.
Activating FcγRIII is the receptor primarily responsible for all 3 models of anaphylaxis, and subsequent downregulation of this receptor was observed. These models differentially relied on histamine release and the contribution of mast cells, basophils, macrophages, and neutrophils. Strikingly, basophil contribution and histamine predominance in mice with IgG- and IgG-induced anaphylaxis correlated with the ability of inhibitory FcγRIIB to negatively regulate these models of anaphylaxis.
We propose that the differential expression of inhibitory FcγRIIB on myeloid cells and its differential binding of IgG subclasses controls the contributions of mast cells, basophils, neutrophils, and macrophages to IgG subclass-dependent anaphylaxis. Collectively, our results unravel novel complexities in the involvement and regulation of cell populations in IgG-dependent reactions in vivo.
动物模型已证明,变应原特异性IgG可导致依赖IgG Fc受体(FcγRs)的全身性过敏反应敏感性。小鼠IgG1和IgG2a可结合激活型FcγRI、FcγRIII和FcγRIV以及抑制型FcγRIIB;小鼠IgG2b仅结合FcγRIII和FcγRIIB。尽管这些相互作用的亲和力差异显著,但这3种IgG亚类均已被证明可诱导全身性过敏反应。
我们试图确定哪些途径控制IgG1、IgG2a和IgG2b依赖性被动全身性过敏反应的诱导。
用IgG1、IgG2a或IgG2b抗三硝基苯单克隆抗体致敏小鼠,然后静脉注射三硝基苯 - 牛血清白蛋白进行激发,以诱导全身性过敏反应,通过直肠温度监测。在注射介质拮抗剂的FcγR缺陷小鼠或已清除嗜碱性粒细胞、单核细胞/巨噬细胞或中性粒细胞的小鼠中评估过敏反应。在过敏反应前后评估这些细胞上FcγR的表达。
激活型FcγRIII是所有3种过敏反应模型的主要负责受体,并且观察到该受体随后的下调。这些模型对组胺释放以及肥大细胞、嗜碱性粒细胞、巨噬细胞和中性粒细胞的贡献存在差异。引人注目的是,在IgG2a和IgG2b诱导的过敏反应小鼠中,嗜碱性粒细胞的贡献和组胺的优势与抑制型FcγRIIB对这些过敏反应模型进行负调节的能力相关。
我们提出,抑制型FcγRIIB在髓样细胞上的差异表达及其与IgG亚类的差异结合控制了肥大细胞、嗜碱性粒细胞、中性粒细胞和巨噬细胞对IgG亚类依赖性过敏反应的贡献。总体而言,我们的结果揭示了体内IgG依赖性反应中细胞群体参与和调节的新复杂性。