Suppr超能文献

利用条件突变体和重组技术探究介导沙眼衣原体在细胞培养中存活的基因。

Interrogating Genes That Mediate Chlamydia trachomatis Survival in Cell Culture Using Conditional Mutants and Recombination.

作者信息

Brothwell Julie A, Muramatsu Matthew K, Toh Evelyn, Rockey Daniel D, Putman Timothy E, Barta Michael L, Hefty P Scott, Suchland Robert J, Nelson David E

机构信息

Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA.

Department of Biomedical Sciences, Oregon State University, Corvallis, Oregon, USA.

出版信息

J Bacteriol. 2016 Jul 13;198(15):2131-9. doi: 10.1128/JB.00161-16. Print 2016 Aug 1.

Abstract

UNLABELLED

Intracellular bacterial pathogens in the family Chlamydiaceae are causes of human blindness, sexually transmitted disease, and pneumonia. Genetic dissection of the mechanisms of chlamydial pathogenicity has been hindered by multiple limitations, including the inability to inactivate genes that would prevent the production of elementary bodies. Many genes are also Chlamydia-specific genes, and chlamydial genomes have undergone extensive reductive evolution, so functions often cannot be inferred from homologs in other organisms. Conditional mutants have been used to study essential genes of many microorganisms, so we screened a library of 4,184 ethyl methanesulfonate-mutagenized Chlamydia trachomatis isolates for temperature-sensitive (TS) mutants that developed normally at physiological temperature (37°C) but not at nonphysiological temperatures. Heat-sensitive TS mutants were identified at a high frequency, while cold-sensitive mutants were less common. Twelve TS mutants were mapped using a novel markerless recombination approach, PCR, and genome sequencing. TS alleles of genes that play essential roles in other bacteria and chlamydia-specific open reading frames (ORFs) of unknown function were identified. Temperature-shift assays determined that phenotypes of the mutants manifested at distinct points in the developmental cycle. Genome sequencing of a larger population of TS mutants also revealed that the screen had not reached saturation. In summary, we describe the first approach for studying essential chlamydial genes and broadly applicable strategies for genetic mapping in Chlamydia spp. and mutants that both define checkpoints and provide insights into the biology of the chlamydial developmental cycle.

IMPORTANCE

Study of the pathogenesis of Chlamydia spp. has historically been hampered by a lack of genetic tools. Although there has been recent progress in chlamydial genetics, the existing approaches have limitations for the study of the genes that mediate growth of these organisms in cell culture. We used a genetic screen to identify conditional Chlamydia mutants and then mapped these alleles using a broadly applicable recombination strategy. Phenotypes of the mutants provide fundamental insights into unexplored areas of chlamydial pathogenesis and intracellular biology. Finally, the reagents and approaches we describe are powerful resources for the investigation of these organisms.

摘要

未加标签

衣原体科的细胞内细菌病原体可导致人类失明、性传播疾病和肺炎。衣原体致病性机制的基因剖析受到多种限制的阻碍,包括无法使那些会阻止原体产生的基因失活。许多基因也是衣原体特异性基因,并且衣原体基因组经历了广泛的简化进化,因此通常无法从其他生物体中的同源物推断其功能。条件突变体已被用于研究许多微生物的必需基因,所以我们筛选了一个由4184个经甲磺酸乙酯诱变的沙眼衣原体分离株组成的文库,以寻找温度敏感(TS)突变体,这些突变体在生理温度(37°C)下能正常发育,但在非生理温度下则不能。高频鉴定出热敏TS突变体,而冷敏突变体则较少见。使用一种新型的无标记重组方法、PCR和基因组测序对12个TS突变体进行了定位。鉴定出了在其他细菌中发挥重要作用的基因的TS等位基因以及功能未知的衣原体特异性开放阅读框(ORF)。温度转换试验确定,突变体的表型在发育周期的不同点表现出来。对更多TS突变体群体的基因组测序还表明,该筛选尚未达到饱和状态。总之,我们描述了研究衣原体必需基因的第一种方法以及衣原体属中广泛适用的基因定位策略,这些突变体既定义了检查点,又为衣原体发育周期的生物学特性提供了见解。

重要性

衣原体属发病机制的研究历来因缺乏遗传工具而受阻。尽管衣原体遗传学最近取得了进展,但现有方法在研究介导这些生物体在细胞培养中生长的基因方面存在局限性。我们使用遗传筛选来鉴定条件性衣原体突变体,然后使用广泛适用的重组策略对这些等位基因进行定位。突变体的表型为衣原体发病机制和细胞内生物学的未探索领域提供了基本见解。最后,我们描述的试剂和方法是研究这些生物体的强大资源。

相似文献

1
Interrogating Genes That Mediate Chlamydia trachomatis Survival in Cell Culture Using Conditional Mutants and Recombination.
J Bacteriol. 2016 Jul 13;198(15):2131-9. doi: 10.1128/JB.00161-16. Print 2016 Aug 1.
2
Inhibition of the Protein Phosphatase CppA Alters Development of Chlamydia trachomatis.
J Bacteriol. 2018 Sep 10;200(19). doi: 10.1128/JB.00419-18. Print 2018 Oct 1.
4
Initial Characterization of the Two ClpP Paralogs of Suggests Unique Functionality for Each.
J Bacteriol. 2018 Dec 20;201(2). doi: 10.1128/JB.00635-18. Print 2019 Jan 15.
5
6
Generation of targeted Chlamydia trachomatis null mutants.
Proc Natl Acad Sci U S A. 2011 Apr 26;108(17):7189-93. doi: 10.1073/pnas.1102229108. Epub 2011 Apr 11.
8
A Reverse Genetic Approach for Studying sRNAs in Chlamydia trachomatis.
mBio. 2022 Aug 30;13(4):e0086422. doi: 10.1128/mbio.00864-22. Epub 2022 Jun 21.
9
Impact of Active Metabolism on Chlamydia trachomatis Elementary Body Transcript Profile and Infectivity.
J Bacteriol. 2018 Jun 25;200(14). doi: 10.1128/JB.00065-18. Print 2018 Jul 15.
10
A secondary structure motif predictive of protein localization to the chlamydial inclusion membrane.
Cell Microbiol. 2000 Feb;2(1):35-47. doi: 10.1046/j.1462-5822.2000.00029.x.

引用本文的文献

1
Isolation and characterization of a Chlamydia muridarum tc0237 mutant from a genetic screen that is attenuated in epithelial cells.
PLoS One. 2025 Aug 5;20(8):e0329637. doi: 10.1371/journal.pone.0329637. eCollection 2025.
2
Pathogenicity and virulence of : Insights into host interactions, immune evasion, and intracellular survival.
Virulence. 2025 Dec;16(1):2503423. doi: 10.1080/21505594.2025.2503423. Epub 2025 May 15.
3
: a model for intracellular bacterial parasitism.
J Bacteriol. 2025 Mar 20;207(3):e0036124. doi: 10.1128/jb.00361-24. Epub 2025 Feb 20.
5
Metabolism and physiology of pathogenic bacterial obligate intracellular parasites.
Front Cell Infect Microbiol. 2024 Mar 22;14:1284701. doi: 10.3389/fcimb.2024.1284701. eCollection 2024.
6
Recent advances in genetic systems in obligate intracellular human-pathogenic bacteria.
Front Cell Infect Microbiol. 2023 Jun 19;13:1202245. doi: 10.3389/fcimb.2023.1202245. eCollection 2023.
7
The emerging complexity of Chlamydia trachomatis interactions with host cells as revealed by molecular genetic approaches.
Curr Opin Microbiol. 2023 Aug;74:102330. doi: 10.1016/j.mib.2023.102330. Epub 2023 May 27.
9
Bringing genetics to heretofore intractable obligate intracellular bacterial pathogens: Chlamydia and beyond.
PLoS Pathog. 2022 Jul 28;18(7):e1010669. doi: 10.1371/journal.ppat.1010669. eCollection 2022 Jul.
10
Expression and structure of the Chlamydia trachomatis DksA ortholog.
Pathog Dis. 2022 May 23;80(1). doi: 10.1093/femspd/ftac007.

本文引用的文献

1
Emancipating Chlamydia: Advances in the Genetic Manipulation of a Recalcitrant Intracellular Pathogen.
Microbiol Mol Biol Rev. 2016 Mar 30;80(2):411-27. doi: 10.1128/MMBR.00071-15. Print 2016 Jun.
2
3
A Coming of Age Story: Chlamydia in the Post-Genetic Era.
Infect Immun. 2015 Dec 14;84(3):612-21. doi: 10.1128/IAI.01186-15.
5
Expanding the Molecular Toolkit for Chlamydia.
Cell Host Microbe. 2015 Jul 8;18(1):11-3. doi: 10.1016/j.chom.2015.06.016.
6
Mutational Analysis of the Chlamydia muridarum Plasticity Zone.
Infect Immun. 2015 Jul;83(7):2870-81. doi: 10.1128/IAI.00106-15. Epub 2015 May 4.
7
Integrating chemical mutagenesis and whole-genome sequencing as a platform for forward and reverse genetic analysis of Chlamydia.
Cell Host Microbe. 2015 May 13;17(5):716-25. doi: 10.1016/j.chom.2015.03.014. Epub 2015 Apr 23.
9
Type II fatty acid synthesis is essential for the replication of Chlamydia trachomatis.
J Biol Chem. 2014 Aug 8;289(32):22365-76. doi: 10.1074/jbc.M114.584185. Epub 2014 Jun 23.
10
Evolution, phylogeny, and molecular epidemiology of Chlamydia.
Infect Genet Evol. 2014 Apr;23:49-64. doi: 10.1016/j.meegid.2014.01.029. Epub 2014 Feb 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验