School of Chemistry, University of Southampton , Highfield, Southampton SO17 1BJ, United Kingdom.
Lead Identification and Optimization Support, Boehringer Ingelheim Pharma GmbH & Co. KG , 88397 Biberach, Germany.
J Chem Theory Comput. 2016 Jul 12;12(7):3135-48. doi: 10.1021/acs.jctc.6b00272. Epub 2016 Jun 16.
We report the development and implementation of an energy decomposition analysis (EDA) scheme in the ONETEP linear-scaling electronic structure package. Our approach is hybrid as it combines the localized molecular orbital EDA (Su, P.; Li, H. J. Chem. Phys., 2009, 131, 014102) and the absolutely localized molecular orbital EDA (Khaliullin, R. Z.; et al. J. Phys. Chem. A, 2007, 111, 8753-8765) to partition the intermolecular interaction energy into chemically distinct components (electrostatic, exchange, correlation, Pauli repulsion, polarization, and charge transfer). Limitations shared in EDA approaches such as the issue of basis set dependence in polarization and charge transfer are discussed, and a remedy to this problem is proposed that exploits the strictly localized property of the ONETEP orbitals. Our method is validated on a range of complexes with interactions relevant to drug design. We demonstrate the capabilities for large-scale calculations with our approach on complexes of thrombin with an inhibitor comprised of up to 4975 atoms. Given the capability of ONETEP for large-scale calculations, such as on entire proteins, we expect that our EDA scheme can be applied in a large range of biomolecular problems, especially in the context of drug design.
我们报告了在 ONETEP 线性标度电子结构包中开发和实施能量分解分析(EDA)方案。我们的方法是混合的,因为它结合了局域分子轨道 EDA(Su,P.;Li,H. J. Chem. Phys.,2009,131,014102)和绝对局域分子轨道 EDA(Khaliullin,R. Z.;等。J. Phys. Chem. A,2007,111,8753-8765)来将分子间相互作用能分解为具有化学区分的成分(静电、交换、相关、Paul 排斥、极化和电荷转移)。讨论了 EDA 方法中存在的限制,例如极化和电荷转移中基组依赖性的问题,并提出了一种利用 ONETEP 轨道严格局域性质的解决方法。我们的方法在一系列与药物设计相关的相互作用的复合物上进行了验证。我们通过与包含多达 4975 个原子的抑制剂的凝血酶复合物上的大规模计算来展示我们方法的能力。鉴于 ONETEP 进行大规模计算的能力,例如在整个蛋白质上,我们预计我们的 EDA 方案可以应用于广泛的生物分子问题,特别是在药物设计的背景下。