School of Life Sciences, School of Materials Science and Engineering, Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China.
Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology of Shandong Province, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, P. R. China.
Adv Healthc Mater. 2016 Sep;5(17):2214-26. doi: 10.1002/adhm.201600212. Epub 2016 Jun 2.
Considering the critical role of mitochondria in the life and death of cells, non-invasive long-term tracking of mitochondria has attracted considerable interest. However, a high-performance mitochondria-specific labeling probe with high photostability is still lacking. Herein a highly photostable hyperbranched polyglycerol (hPG)-based near-infrared (NIR) quantum dots (QDs) nanoplatform is reported for mitochondria-specific cell imaging. Comprising NIR Zn-Cu-In-S/ZnS QDs as extremely photostable fluorescent labels and alkyl chain (C12 )/triphenylphosphonium (TPP)-functionalized hPG derivatives as protective shell, the tailored QDs@hPG-C12 /TPP nanoprobe with a hydrodynamic diameter of about 65 nm exhibits NIR fluorescence, excellent biocompatibility, good stability, and mitochondria-targeted ability. Cell uptake experiments demonstrate that QDs@hPG-C12 /TPP displays a significantly enhanced uptake in HeLa cells compared to nontargeted QDs@hPG-C12 . Further co-localization study indicates that the probe selectively targets mitochondria. Importantly, compared with commercial deep-red mitochondria dyes, QDs@hPG-C12 /TPP possesses superior photostability under continuous laser irradiation, indicating great potential for long-term mitochondria labeling and tracking. Moreover, drug-loaded QDs@hPG-C12 /TPP display an enhanced tumor cell killing efficacy compared to nontargeted drugs. This work could open the door to the construction of organelle-targeted multifunctional nanoplatforms for precise diagnosis and high-efficient tumor therapy.
鉴于线粒体在细胞生死中的关键作用,对其进行非侵入性的长期追踪受到了广泛关注。然而,目前仍缺乏一种具有高光稳定性的高性能线粒体特异性标记探针。在此,我们报道了一种基于高度光稳定的超支化聚甘油(hPG)的近红外(NIR)量子点(QD)纳米平台,用于线粒体特异性细胞成像。该纳米平台由近红外 Zn-Cu-In-S/ZnS QD 作为极其光稳定的荧光标记物和烷基链(C12)/三苯基膦(TPP)功能化的 hPG 衍生物作为保护壳组成,所制备的具有约 65nm 水动力学直径的 QDs@hPG-C12 /TPP 纳米探针具有近红外荧光、优异的生物相容性、良好的稳定性和线粒体靶向能力。细胞摄取实验表明,与非靶向的 QDs@hPG-C12 相比,QD@hPG-C12 /TPP 在 HeLa 细胞中的摄取显著增强。进一步的共定位研究表明,该探针选择性地靶向线粒体。重要的是,与商业深红色线粒体染料相比,QD@hPG-C12 /TPP 在连续激光照射下具有优越的光稳定性,表明其在长期线粒体标记和追踪方面具有巨大的应用潜力。此外,载药的 QDs@hPG-C12 /TPP 显示出比非靶向药物更高的肿瘤细胞杀伤效力。这项工作为构建用于精确诊断和高效肿瘤治疗的细胞器靶向多功能纳米平台开辟了道路。