Naiman Karel, Pagès Vincent, Fuchs Robert P
Team DNA Damage Tolerance, Cancer Research Center of Marseille (CRCM), CNRS, UMR7258, Marseille, F-13009, France Inserm, U1068, CRCM, Marseille, F-13009, France Institut Paoli-Calmettes, Marseille, F-13009, France Aix-Marseille University, UM 105, F-13284, Marseille, France.
Team DNA Damage Tolerance, Cancer Research Center of Marseille (CRCM), CNRS, UMR7258, Marseille, F-13009, France Inserm, U1068, CRCM, Marseille, F-13009, France Institut Paoli-Calmettes, Marseille, F-13009, France Aix-Marseille University, UM 105, F-13284, Marseille, France
Nucleic Acids Res. 2016 Sep 19;44(16):7691-9. doi: 10.1093/nar/gkw488. Epub 2016 Jun 1.
DNA damage tolerance pathways allow cells to duplicate their genomes despite the presence of replication blocking lesions. Cells possess two major tolerance strategies, namely translesion synthesis (TLS) and homology directed gap repair (HDGR). TLS pathways involve specialized DNA polymerases that are able to synthesize past DNA lesions with an intrinsic risk of causing point mutations. In contrast, HDGR pathways are essentially error-free as they rely on the recovery of missing information from the sister chromatid by RecA-mediated homologous recombination. We have investigated the genetic control of pathway choice between TLS and HDGR in vivo in Escherichia coli In a strain with wild type RecA activity, the extent of TLS across replication blocking lesions is generally low while HDGR is used extensively. Interestingly, recA alleles that are partially impaired in D-loop formation confer a decrease in HDGR and a concomitant increase in TLS. Thus, partial defect of RecA's capacity to invade the homologous sister chromatid increases the lifetime of the ssDNA.RecA filament, i.e. the 'SOS signal'. This increase favors TLS by increasing both the TLS polymerase concentration and the lifetime of the TLS substrate, before it becomes sequestered by homologous recombination. In conclusion, the pathway choice between error-prone TLS and error-free HDGR is controlled by the efficiency of homologous recombination.
DNA损伤耐受途径使细胞能够在存在复制阻断损伤的情况下复制其基因组。细胞拥有两种主要的耐受策略,即跨损伤合成(TLS)和同源定向缺口修复(HDGR)。TLS途径涉及特殊的DNA聚合酶,这些聚合酶能够跨越DNA损伤进行合成,但存在导致点突变的内在风险。相比之下,HDGR途径基本无差错,因为它们依赖于通过RecA介导的同源重组从姐妹染色单体中恢复缺失的信息。我们在大肠杆菌体内研究了TLS和HDGR之间途径选择的遗传控制。在具有野生型RecA活性的菌株中,跨越复制阻断损伤的TLS程度通常较低,而HDGR被广泛使用。有趣的是,在D环形成中部分受损的recA等位基因会导致HDGR减少,同时TLS增加。因此,RecA侵入同源姐妹染色单体能力的部分缺陷会增加单链DNA.RecA细丝的寿命,即“SOS信号”。这种增加通过增加TLS聚合酶浓度和TLS底物在被同源重组隔离之前的寿命来促进TLS。总之,易出错的TLS和无差错的HDGR之间的途径选择由同源重组的效率控制。