Suppr超能文献

亚洲人群心脏手术后房颤的临床预测模型

A Clinical Prediction Model for Postcardiac Surgery Atrial Fibrillation in an Asian Population.

作者信息

Zhang Wei, Liu Weiling, Chew Sophia T H, Shen Liang, Ti Lian Kah

机构信息

From the *Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore; †Department of Anesthesia, National University Health System, Singapore, Republic of Singapore; ‡Department of Anesthesia and Surgical Intensive Care, Singapore General Hospital, Singapore, Republic of Singapore; and §National University Health System, Singapore, Republic of Singapore.

出版信息

Anesth Analg. 2016 Aug;123(2):283-9. doi: 10.1213/ANE.0000000000001384.

Abstract

BACKGROUND

Postoperative atrial fibrillation (AF) is associated with increased morbidity, mortality, and resource utilization. Current prediction models for postoperative AF are based primarily on Western populations. In this study, we sought to develop a clinical prediction rule for postcardiac surgery AF for a multiethnic Asian population.

METHODS

Two thousand one hundred sixty-eight patients undergoing coronary artery bypass graft or valve surgery with cardiopulmonary bypass were prospectively enrolled in this observational study between August 2008 and July 2012 at Singapore's 2 national heart centers. Postoperative AF was defined as an irregularly irregular electrocardiogram rhythm without identifiable P wave after surgery and before hospital discharge that lasted more than an hour, or affected hemodynamics (ie, systolic blood pressure <90 mm Hg or mean arterial blood pressure <60 mm Hg), or required medical treatment. Patients had continuous telemetry monitoring for at least 72 hours while in the intensive care or high-dependency units postoperatively. Subsequently, patients had a 12-lead electrocardiogram daily and when symptomatic. Multivariable logistic regression was used to determine significant predictors of postcardiac surgery AF, and a scoring system was developed. The model was internally validated in an additional 500 patients.

RESULTS

Postoperative AF occurred in 17.3% of patients, with a peak occurrence in the first 72 hours after surgery. Multivariate logistic regression analysis identified age ≥65 years (odds ratio [OR], 1.44; 95% confidence interval [CI], 1.11-1.85, P = 0.005), history of AF (OR, 3.65; 95% CI, 2.52-5.30, P < 0.001), inotrope use (OR, 1.74; 95% CI, 1.31-2.32, P < 0.001), cardiopulmonary bypass duration >120 minutes (OR, 1.92; 95% CI, 1.47-2.52, P < 0.001), and Chinese ethnicity (Chinese versus Indian OR, 2.09; 95% CI, 1.28-3.41, P = 0.003) or Malay (Malay versus Indian OR, 2.43; 95% CI, 1.36-4.05, P = 0.002) to be independently associated with postoperative AF. The area under the receiver-operator characteristic curve of the model was 0.704 (95% CI, 0.674-0.734). Internal validation produced an area under the receiver-operator characteristic curve of 0.756 (95% CI, 0.690-0.821).

CONCLUSIONS

Clinical risk factors for AF after cardiac surgery in an Asian population are similar to that reported from primarily Western populations, but specific ethnicity influences susceptibility.

摘要

背景

术后房颤(AF)与发病率、死亡率增加及资源利用增多相关。目前用于预测术后房颤的模型主要基于西方人群。在本研究中,我们试图为多民族亚洲人群开发一种心脏手术后房颤的临床预测规则。

方法

2008年8月至2012年7月期间,在新加坡的2家国立心脏中心,对2168例行冠状动脉旁路移植术或瓣膜置换术并接受体外循环的患者进行了前瞻性纳入,该观察性研究。术后房颤定义为术后至出院前心电图出现不规则的不规则节律,无明确P波,持续超过1小时,或影响血流动力学(即收缩压<90 mmHg或平均动脉压<60 mmHg),或需要药物治疗。患者术后在重症监护病房或高依赖病房时接受至少72小时的连续遥测监测。随后,患者每天进行12导联心电图检查,有症状时也进行检查。采用多变量逻辑回归确定心脏手术后房颤的显著预测因素,并开发了一个评分系统。该模型在另外500例患者中进行了内部验证。

结果

17.3%的患者发生了术后房颤,术后72小时内发生率最高。多变量逻辑回归分析确定年龄≥65岁(比值比[OR],1.44;95%置信区间[CI],1.11 - 1.85,P = 0.005)、房颤病史(OR,3.65;95% CI,2.52 - 5.30,P < 0.001)、使用血管活性药物(OR,1.74;95% CI,1.31 - 2.32,P < 0.001)、体外循环时间>120分钟(OR,1.92;95% CI,1.47 - 2.52,P < 0.001)以及华裔(华裔与印度裔相比OR,2.09;95% CI,1.28 - 3.41,P = 0.003)或马来裔(马来裔与印度裔相比OR,2.43;95% CI,1.36 - 4.05,P = 0.002)与术后房颤独立相关。该模型的受试者工作特征曲线下面积为0.704(95% CI,0.674 - 0.734)。内部验证产生的受试者工作特征曲线下面积为0.756(95% CI,0.690 - 0.821)。

结论

亚洲人群心脏手术后房颤的临床危险因素与主要西方人群报道的相似,但特定种族会影响易感性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验