Suppr超能文献

大型强子对撞机上顶夸克对的重整化微分散射截面

Resummed Differential Cross Sections for Top-Quark Pairs at the LHC.

作者信息

Pecjak Benjamin D, Scott Darren J, Wang Xing, Yang Li Lin

机构信息

Institute for Particle Physics Phenomenology, University of Durham, DH1 3LE Durham, United Kingdom.

School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China.

出版信息

Phys Rev Lett. 2016 May 20;116(20):202001. doi: 10.1103/PhysRevLett.116.202001. Epub 2016 May 19.

Abstract

We present state of the art resummation predictions for differential cross sections in top-quark pair production at the LHC. They are derived from a formalism which allows the simultaneous resummation of both soft and small-mass logarithms, which endanger the convergence of fixed-order perturbative series in the boosted regime, where the partonic center-of-mass energy is much larger than the mass to the top quark. We combine such a double resummation at next-to-next-to-leading logarithmic^{'} (NNLL^{'}) accuracy with standard soft-gluon resummation at next-to-next-to-leading logarithmic accuracy and with next-to-leading-order calculations, so that our results are applicable throughout the whole phase space. We find that the resummation effects on the differential distributions are significant, bringing theoretical predictions into better agreement with experimental data compared to fixed-order calculations. Moreover, such effects are not well described by the next-to-next-to-leading-order approximation of the resummation formula, especially in the high-energy tails of the distributions, highlighting the importance of all-orders resummation in dedicated studies of boosted top production.

摘要

我们展示了大型强子对撞机(LHC)上顶夸克对产生过程中微分截面的最新重整化预测。这些预测源自一种形式体系,该体系允许同时重整软对数和小质量对数,在高能极限区域,即部分子质心能量远大于顶夸克质量时,这些对数会危及固定阶微扰级数的收敛性。我们将这种次下一个领先对数(NNLL′)精度的双重重整化与次下一个领先对数精度的标准软胶子重整化以及次领先阶计算相结合,以便我们的结果适用于整个相空间。我们发现重整化对微分分布的影响显著,与固定阶计算相比,使理论预测与实验数据的吻合度更高。此外,重整化公式的次下一个领先阶近似并不能很好地描述这些影响,特别是在分布的高能尾部,这凸显了在专门研究高能顶夸克产生时全阶重整化的重要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验