Abioye Amos Olusegun, Chi George Tangyie, Simone Elena, Nagy Zoltan
Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester, LE1 9BH, UK.
Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester, LE1 9BH, UK.
Int J Pharm. 2016 Jul 25;509(1-2):264-278. doi: 10.1016/j.ijpharm.2016.05.066. Epub 2016 May 31.
One step aqueous melt-crystallization and in situ granulation was utilized to produce ibuprofen-cationic dextran [diethylaminoethyl dextran (Ddex)] conjugate crystanules without the use of surfactants or organic solvents. This study investigates the mechanism of in situ granulation-induced crystanule formation using ibuprofen (Ibu) and Ddex. Laboratory scale batch aqueous crystallization system containing in situ monitoring probes for particle vision measurement (PVM), UV-vis measurement and focused beam reflectance measurements (FBRM) was adapted using pre-defined formulation and process parameters. Pure ibuprofen showed nucleation domain between 25 and 64°C, producing minicrystals with onset of melting at 76°C and enthalpy of fusion (ΔH) of 26.22kJ/mol. On the other hand Ibu-Ddex crystanules showed heterogeneous nucleation which produced spherical core-shell structure. PVM images suggest that internalization of ibuprofen in Ddex corona occurred during the melting phase (before nucleation) which inhibited crystal growth inside the Ddex corona. The remarkable decrease in ΔH of the crystanules from 26.22 to 11.96kJ/mol and the presence of broad overlapping DSC thermogram suggests formation of ibuprofen-Ddex complex and crystalline-amorphous transformation. However Raman and FTIR spectra did not show any significant chemical interaction between ibuprofen and Ddex. A significant increase in dissolution efficiency from 45 to 81% within 24h and reduced burst release provide evidence for potential application of crystanules in controlled drug delivery systems. It was evident that in situ granulation of ibuprofen inhibited the aqueous crystallization process. It was concluded that in situ granulation-aqueous crystallization technique is a novel unit operation with potential application in continuous pharmaceutical processing.
采用一步水相熔融结晶和原位造粒法,在不使用表面活性剂或有机溶剂的情况下制备了布洛芬 - 阳离子葡聚糖[二乙氨基乙基葡聚糖(Ddex)]共轭结晶颗粒。本研究利用布洛芬(Ibu)和Ddex研究了原位造粒诱导结晶颗粒形成的机制。使用预定义的配方和工艺参数,采用了包含用于颗粒视觉测量(PVM)、紫外 - 可见测量和聚焦光束反射测量(FBRM)的原位监测探头的实验室规模间歇水结晶系统。纯布洛芬的成核区域在25至64°C之间,产生的微晶在76°C开始熔化,熔化焓(ΔH)为26.22kJ/mol。另一方面,Ibu - Ddex结晶颗粒显示出异质成核,产生球形核壳结构。PVM图像表明,在熔化阶段(成核前)布洛芬在Ddex冠层内发生内化,这抑制了Ddex冠层内的晶体生长。结晶颗粒的ΔH从26.22显著降低至11.96kJ/mol,以及存在宽重叠的DSC热谱图,表明形成了布洛芬 - Ddex复合物和晶态 - 非晶态转变。然而,拉曼光谱和傅里叶变换红外光谱未显示布洛芬与Ddex之间有任何显著的化学相互作用。24小时内溶解效率从45%显著提高到81%,且突释减少,这为结晶颗粒在控释给药系统中的潜在应用提供了证据。很明显,布洛芬的原位造粒抑制了水相结晶过程。得出的结论是,原位造粒 - 水相结晶技术是一种新型单元操作,在连续制药加工中具有潜在应用价值。