Sadaf Hina, Nadeem S
Department of Mathematics, Quaid-i-Azam University 45320, Islamabad 44000, Pakistan.
Department of Mathematics, Quaid-i-Azam University 45320, Islamabad 44000, Pakistan.
Comput Methods Programs Biomed. 2016 Jul;131:169-80. doi: 10.1016/j.cmpb.2016.04.008. Epub 2016 Apr 19.
The objective of this paper is to study the influences of slip and Cu-blood nanofluid in a physiological study of cilia.
DESIGN/METHODOLOGY/APPROACH: The right wall and the left wall possess metachronal wave that is traveling along the outer boundary of the channel. The features of ciliary structures are determined by the dominance of viscous effects over inertial effects using the long wavelength approximation. The flow possessions for the viscous nano fluid are solved as a function of the cilia and metachronal wave velocity. Mathematica numerical simulation is used to calculate pressure rise. Exact solutions are calculated for the temperature and for the velocity profile.
Numerical integration has been implemented to get the expression of pressure rise. Graphical results have been offered for pressure rise, temperature and stream function for various physical parameters of interest. Symmetry of the curved channel is recovered for larger values of the curvature parameter. It is found from the graphs of the pressure rise that reflux case occurs for increasing values of curvature and velocity slip parameter. It is also found that temperature decreases for increasing values of nanoparticle volume fraction. Basically, higher thermal conductivity of the nanoparticles plays a key role for quick heat dissipation, and this justifies the use of the copper nanoparticles in different situations as a coolant.
Velocity graph near the right wall of the channel decreases when we add nanoparticles into our base fluid, whereas an opposite behavior is depicted near the left wall due to ciliated tips. Pressure gradient increases for increasing values of Gr (Grashof number), L (velocity slip parameter) ϕ (nanoparticle volume fraction) and k (curvature parameter). Pressure rise shows increasing behavior for the increasing values of ε, Gr and ϕ throughout the region. Shear stress graphs show the increasing behavior for increasing values of curvature parameter and volume fraction of the nanoparticle. Temperature profile decreases when we add nanoparticles into our base fluid. Temperature profile also increases with an increase in thermal slip parameter γ and heat absorption parameter. It is observed that the number of trapped bolus increases when we increase the value of the cilia length parameter.
本文的目的是在纤毛的生理学研究中研究滑移和铜 - 血液纳米流体的影响。
设计/方法/途径:右壁和左壁具有沿通道外边界传播的相继波动。利用长波长近似,通过粘性效应相对于惯性效应的主导作用来确定纤毛结构的特征。粘性纳米流体的流动特性作为纤毛和相继波速度的函数来求解。使用Mathematica数值模拟来计算压力升。计算温度和速度分布的精确解。
已进行数值积分以获得压力升的表达式。针对各种感兴趣的物理参数,给出了压力升、温度和流函数 的图形结果。对于较大的曲率参数值,弯曲通道的对称性得以恢复。从压力升的图形中发现,随着曲率和速度滑移参数值的增加会出现回流情况。还发现随着纳米颗粒体积分数值的增加温度会降低。基本上,纳米颗粒较高的热导率对快速散热起着关键作用,这证明了在不同情况下使用铜纳米颗粒作为冷却剂的合理性。
当我们向基础流体中添加纳米颗粒时,通道右壁附近的速度图会减小,而由于纤毛尖端,左壁附近呈现相反的行为。随着格拉晓夫数(Gr)、速度滑移参数(L)、纳米颗粒体积分数(ϕ)和曲率参数(k)值的增加,压力梯度增大。在整个区域内,随着ε、Gr和ϕ值的增加,压力升呈现增加的趋势。剪应力图显示随着曲率参数和纳米颗粒体积分数值的增加而呈现增加的趋势。当我们向基础流体中添加纳米颗粒时,温度分布会降低。温度分布也随着热滑移参数γ和热吸收参数的增加而增加。观察到当我们增加纤毛长度参数的值时,滞留团块的数量会增加。