Oda Masayuki, Tanabe Yoichi, Noda Masanori, Inaba Satomi, Krayukhina Elena, Fukada Harumi, Uchiyama Susumu
Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5, Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan.
Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5, Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan.
Carbohydr Res. 2016 Aug 5;431:33-8. doi: 10.1016/j.carres.2016.05.008. Epub 2016 May 26.
One of the β-1,3-glucans, laminarin, has been widely used as a substrate for enzymes including endo-1,3-β-glucanase. To obtain quantitative information about the molecular interaction between laminarin and endo-1,3-β-glucanase, the structural properties of laminarin should be determined. The results from pioneering work using analytical ultracentrifugation for carbohydrate analysis showed that laminarin from Laminaria digitata predominantly exists as a single-chain species with approximately 5% of triple-helical species. Differential scanning calorimetry experiments did not show a peak assignable to the transition from triple-helix to single-chain, supporting the notion that a large proportion of laminarin is the single-chain species. The interaction of laminarin with an inactive variant of endo-1,3-β-glucanase from Cellulosimicrobium cellulans, E119A, was quantitatively analyzed using isothermal titration calorimetry. The binding was enthalpically driven and the binding affinity was approximately 10(6) M(-1). The results from binding stoichiometric analysis indicated that on average, E119A binds to laminarin in a 2:1 ratio. This seems to be reasonable, because laminarin mainly exists as a monomer, the apparent molecular mass of laminarin is 3.6 kDa, and E119A would have substrate-binding subsites corresponding to 6 glucose units. The analytical ultracentrifugation experiments could detect different complex species of laminarin and endo-1,3-β-glucanase.
β-1,3-葡聚糖之一的海带多糖已被广泛用作包括内切-1,3-β-葡聚糖酶在内的多种酶的底物。为了获得关于海带多糖与内切-1,3-β-葡聚糖酶之间分子相互作用的定量信息,需要确定海带多糖的结构特性。早期使用分析超速离心法进行碳水化合物分析的研究结果表明,掌状海带中的海带多糖主要以单链形式存在,约5%为三螺旋形式。差示扫描量热法实验未显示出可归因于从三螺旋向单链转变的峰,这支持了大部分海带多糖是单链形式的观点。使用等温滴定量热法对海带多糖与纤维微杆菌来源的内切-1,3-β-葡聚糖酶的无活性变体E119A之间的相互作用进行了定量分析。该结合是由焓驱动的,结合亲和力约为10(6) M(-1)。结合化学计量分析结果表明,平均而言,E119A与海带多糖以2:1的比例结合。这似乎是合理的,因为海带多糖主要以单体形式存在,海带多糖的表观分子量为3.6 kDa,并且E119A会有对应于6个葡萄糖单元的底物结合亚位点。分析超速离心实验能够检测到海带多糖和内切-1,3-β-葡聚糖酶的不同复合物形式。