Wu Yirong, Abbey Craig K, Liu Jie, Ong Irene, Peissig Peggy, Onitilo Adedayo A, Fan Jun, Yuan Ming, Burnside Elizabeth S
Dept. of Radiology, University of Wisconsin, Madison, WI, US.
Dept. of Psychological and Brain Sciences, University of California, Santa Barbara, CA, US.
Proc SPIE Int Soc Opt Eng. 2016 Feb 27;9787. doi: 10.1117/12.2217030. Epub 2016 Mar 24.
Technology advances in genome-wide association studies (GWAS) has engendered optimism that we have entered a new age of precision medicine, in which the risk of breast cancer can be predicted on the basis of a person's genetic variants. The goal of this study is to evaluate the discriminatory power of common genetic variants in breast cancer risk estimation. We conducted a retrospective case-control study drawing from an existing personalized medicine data repository. We collected variables that predict breast cancer risk: 153 high-frequency/low-penetrance genetic variants, reflecting the state-of-the-art GWAS on breast cancer, mammography descriptors and BI-RADS assessment categories in the Breast Imaging Reporting and Data System (BI-RADS) lexicon. We trained and tested naïve Bayes models by using these predictive variables. We generated ROC curves and used the area under the ROC curve (AUC) to quantify predictive performance. We found that genetic variants achieved comparable predictive performance to BI-RADS assessment categories in terms of AUC (0.650 vs. 0.659, p-value = 0.742), but significantly lower predictive performance than the combination of BI-RADS assessment categories and mammography descriptors (0.650 vs. 0.751, p-value < 0.001). A better understanding of relative predictive capability of genetic variants and mammography data may benefit clinicians and patients to make appropriate decisions about breast cancer screening, prevention, and treatment in the era of precision medicine.
全基因组关联研究(GWAS)中的技术进步引发了人们的乐观情绪,即我们已进入精准医学的新时代,在这个时代,可以根据一个人的基因变异来预测患乳腺癌的风险。本研究的目的是评估常见基因变异在乳腺癌风险评估中的鉴别能力。我们从现有的个性化医学数据存储库中进行了一项回顾性病例对照研究。我们收集了预测乳腺癌风险的变量:153个高频/低外显率基因变异,反映了乳腺癌的最新GWAS研究、乳房X线摄影描述符以及乳腺影像报告和数据系统(BI-RADS)词汇表中的BI-RADS评估类别。我们使用这些预测变量对朴素贝叶斯模型进行训练和测试。我们生成了ROC曲线,并使用ROC曲线下面积(AUC)来量化预测性能。我们发现,就AUC而言,基因变异的预测性能与BI-RADS评估类别相当(0.650对0.659,p值 = 0.742),但预测性能显著低于BI-RADS评估类别和乳房X线摄影描述符的组合(0.650对0.751,p值 < 0.001)。更好地了解基因变异和乳房X线摄影数据的相对预测能力,可能有助于临床医生和患者在精准医学时代就乳腺癌筛查、预防和治疗做出适当决策。