Univ. Grenoble Alpes, Grenoble Institut des Neurosciences (GIN), F-38000, Grenoble, France; INSERM, U1216, F-38000, Grenoble, France.
Pole Recherche, CHU Grenoble, F-38000, Grenoble, France; IRMaGe, Inserm US17 CNRS UMS 3552, F-38000, Grenoble, France; AGEIS EA7407, Univ. Grenoble Alpes, F-38000, Grenoble, France.
Neuroimage. 2016 Nov 15;142:172-187. doi: 10.1016/j.neuroimage.2016.05.062. Epub 2016 Jun 6.
The exploration of brain networks with resting-state fMRI (rs-fMRI) combined with graph theoretical approaches has become popular, with the perspective of finding network graph metrics as biomarkers in the context of clinical studies. A preliminary requirement for such findings is to assess the reliability of the graph based connectivity metrics. In previous test-retest (TRT) studies, this reliability has been explored using intraclass correlation coefficient (ICC) with heterogeneous results. But the issue of sample size has not been addressed. Using the large TRT rs-fMRI dataset from the Human Connectome Project (HCP), we computed ICCs and their corresponding p-values (applying permutation and bootstrap techniques) and varied the number of subjects (from 20 to 100), the scan duration (from 400 to 1200 time points), the cost and the graph metrics, using the Anatomic-Automatic Labelling (AAL) parcellation scheme. We quantified the reliability of the graph metrics computed both at global and regional level depending, at optimal cost, on two key parameters, the sample size and the number of time points or scan duration. In the cost range between 20% to 35%, most of the global graph metrics are reliable with 40 subjects or more with long scan duration (14min 24s). In large samples (for instance, 100 subjects), most global and regional graph metrics are reliable for a minimum scan duration of 7min 14s. Finally, for 40 subjects and long scan duration (14min 24s), the reliable regions are located in the main areas of the default mode network (DMN), the motor and the visual networks.
静息态 fMRI(rs-fMRI)与图论方法相结合的脑网络研究受到了广泛关注,其目的是寻找网络图指标作为临床研究背景下的生物标志物。此类发现的初步要求是评估基于图的连通性指标的可靠性。在之前的测试-重测(TRT)研究中,已经使用组内相关系数(ICC)对这种可靠性进行了探讨,但并未解决样本量的问题。我们使用来自人类连接组计划(HCP)的大型 TRT rs-fMRI 数据集,计算了 ICC 及其相应的 p 值(应用置换和自举技术),并改变了受试者数量(从 20 到 100)、扫描持续时间(从 400 到 1200 个时间点)、成本和图指标,使用解剖自动标记(AAL)分区方案。我们根据两个关键参数(样本量和时间点或扫描持续时间的数量),在全局和区域水平上量化了所计算的图指标的可靠性。在成本范围为 20%至 35%之间,大多数全局图指标在 40 名受试者或更多、扫描持续时间较长(14 分 24 秒)的情况下是可靠的。在大样本(例如,100 名受试者)中,大多数全局和区域图指标在 7 分 14 秒的最短扫描持续时间下是可靠的。最后,对于 40 名受试者和较长的扫描持续时间(14 分 24 秒),可靠的区域位于默认模式网络(DMN)、运动和视觉网络的主要区域。